• 제목/요약/키워드: Space net

Search Result 464, Processing Time 0.026 seconds

A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

  • Yee, Ben C.;Kochunas, Brendan;Larsen, Edward W.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1125-1134
    • /
    • 2017
  • In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

Measuring and unfolding fast neutron spectra using solution-grown trans-stilbene scintillation detector

  • Nguyen Duy Quang;HongJoo Kim;Phan Quoc Vuong;Nguyen Duc Ton;Uk-Won Nam;Won-Kee Park;JongDae Sohn;Young-Jun Choi;SungHwan Kim;SukWon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1021-1030
    • /
    • 2023
  • We propose an overall procedure for measuring and unfolding fast neutron spectra using a trans-stilbene scintillation detector. Detector characterization was described, including the information on energy calibration, detector resolution, and nonproportionality response. The digital charge comparison method was used for the investigation of neutron-gamma Pulse Shape Discrimination (PSD). A pair of values of 600 ns pulse width and 24 ns delay time was found as the optimized conditions for PSD. A fitting technique was introduced to increase the trans-stilbene Proton Response Function (PRF) by 28% based on comparison of the simulated and experimental electron-equivalent distributions by the Cf-252 source. The detector response matrix was constructed by Monte-Carlo simulation and the spectrum unfolding was implemented using the iterative Bayesian method. The unfolding of simulated and measured spectra of Cf-252 and AmBe neutron sources indicates reliable, stable and no-bias results. The unfolding technique was also validated by the measured cosmic-ray induced neutron flux. Our approach is promising for fast neutron detection and spectroscopy.

A Comparison of Samplers for Aquatic Macroinvertebrate in Rice Paddies: Aquatic Net, Quadrat and Core (논에 서식하는 수서 대형무척추동물의 채집기 비교: 채집망과 방형구 및 core)

  • Kang, Hyun-Kyung;Chung, Keun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • With growing interest in biodiversity in rice paddies, efficient sampling methods for quantitative evaluation of aquatic macroinvertebrates are needed because of their important role in rice paddies' food webs. For this reason, we sought a proper sampling method through comparing data collected by using aquatic net, quadrat, and core in rice paddies located in Chuncheon-si, Kangwon-do, Hongseong-gun, and Chungcheongnam-do. Because the frame of the net was rectangular and had a flat bottom, the area, sampledwith the aquatic net, was calculated by multiplying the net width by the sweeping length, All samples were taken from the space between the rows of rice plants. Twenty four taxa of macro invertebrates were collected in Chuncheon and 28 taxa in Hongseong. In Chuncheon, the number of taxa was similar among three sampling methods (17-18 taxa), but the number of individuals was different (aquatic net, $1,317/m^2$; quadrat, $1,368/m^2$; core, $1,810/m^2$. In Hongseong, the number of taxa sampled by aquatic net was the highest (aquatic net, 25 taxa; quadrat, 21 taxa; core, 16 taxa), but the core was the highest in the number of individuals (aquatic net, $1,586/m^2$; quadrat, $2,595/m^2$; core, $3,704/m^2$. The efficiency of samplers differed among taxa. Most of aquatic insect taxa were more abundant in the aquatic net, while those living on or in the paddy substratum such as Oligochaeta and Chironomidae were collected more in the quadrat sampler. To collect quantitative data for aquatic insects as well as to produce inventory of rare taxa, we suggest, based on samplers used in this study, to take quantitative samples of 6 replications from each of the edge and inner zones of a rice paddy by using an aquatic net, and to take qualitative samples both from sides of levees and the inner zone of rice paddy by using an aquatic net.

NEW FRONTIERS IN THERMAL PLASMAS FROM SPACE TO NANOMATERIALS

  • Boulos, Maher I.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Thermal plasma technology has been at the center of major developments over the past century. It has found numerous applications ranging from aerospace materials testing to nanopowder synthesis and processing. In the present review highlights of principal breakthroughs in this field are presented with emphasis on an analysis of the basic phenomena involved, and the potential of the technology for industrial scale applications.

ON SOME OUTSTANDING PROBLEMS IN NUCLEAR REACTOR ANALYSIS

  • Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.207-224
    • /
    • 2012
  • This article discusses selects of some outstanding problems in nuclear reactor analysis, with proposed approaches thereto and numerical test results, as follows: i) multi-group approximation in the transport equation, ii) homogenization based on isolated single-assembly calculation, and iii) critical spectrum in Monte Carlo depletion.

A Linkage Based Space Debris Capture Device Utilizing Kevlar Wires (Kevlar wire를 이용한 링크 구동형 우주잔해 포획장치)

  • Jung, Jinwon;Hwang, Bohyun;Kim, Heekyung;Lee, Gunhee;Seo, Minseok;Lee, Dongyun;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.36-41
    • /
    • 2017
  • As the space debris in the satellite orbit increases, the risk of collision between the currently operating satellites and the space debris is continuously increasing. Therefore, in this study, we designed one-degree-of-freedom capture device using simple deployment mechanism. The capture device consists of four link groups connected with net. To increase the reliability, each link group is connected to one driving part so that the total degree of freedom is 1. In addition, the links were stowed on each side of the satellites so that they would not affect the janitor satellite mission. Finally, to confirm the possibility of deployment in the space environment, we carried out deployment experiments in water similar to the microgravity environment, and confirmed the deployment of capture device and the possibility of capturing target satellite.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

Design and Implementation of a Genetic Algorithm for Detailed Routing (디테일드 라우팅 유전자 알고리즘의 설계와 구현)

  • 송호정;송기용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.63-69
    • /
    • 2002
  • Detailed routing is a problem assigning each net to a track after global routing. The most popular algorithms for detailed routing include left-edge algorithm, dogleg algorithm, and greedy channel routing algorithm. In this paper we propose a genetic algorithm searching solution space for the detailed routing problem. We compare the performance of proposed genetic algorithm(GA) for detailed routing with that of greedy channel routing algorithm by analyzing the results of each implementation.

  • PDF

A Study on the Chronic Change of the Space Allocation and the Development Trend in General Hospitals in Korea - Focused on the 1970's, 80's and 90's - (국내 종합병원의 연대별 면적변화와 발전과정에 관한 조사 연구 -1970, 80, 90년대를 중심으로-)

  • Lee, Cheol-Seung;Yang, Nae-Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.5 no.9
    • /
    • pp.17-23
    • /
    • 1999
  • The Korean hospitals have been changed a lot from 1970's to 1990's, not only in their space allocation but also in their functions. These changes were affected by the medical development, social atmosphere, increasing population, needs of medical demands, and so on. In this study, we compared net area allocation involve in these affect of hospitals which were built in 1970's, 80's, and 90's, and through this comparison, we analyzed developing tendencies of hospitals. In doing so, we tried to provide basic research data for planning of new hospital buildings.

  • PDF

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.