• 제목/요약/키워드: Space cryogenics

검색결과 48건 처리시간 0.019초

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

수치해석을 통한 KSTAR 주장치 열차폐 패널 열.유동 특성해석 (Thermal Flow Analysis and Design of KSTAR Thermal Shield Panel by Numerical Method)

  • 김동락;김광선;노영미;조승연;김승현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권2호
    • /
    • pp.73-77
    • /
    • 2002
  • In order to derive the detailed design of Thermal Shield Cryopanel. which plays a role to make the Tokamak Nuclear Fusion Equipment work at both static and efficient conditions the commercially available software package FLUENT Version 5.3, was utilized. This study investigated the effects of thermal sources and distributions on the temperatures of Lid. Body. Base. and EH-Port Cryopanel by the numerical technique whose grid generations cover the solid and 9as region of the panel. The physical model of the Thermal Shield Cryopanel is that the 10mm diameter of the pipe with 1mm thickness is soldered on the Stainless steel Panel with 4mm thickness. The heat fluxes to the panel are assumed to be by thermal radiation in the vacuum space and by conduction through the supporters. The inlet conditions of Helium gas are 20 atmospheric Pressures and 60K temperature. The panel shapes with cooling Pipes and the operational conditions to keep appropriate temperature distribution of Thermal Shield Cryopanel Have been found and suggested.

고온 초전도 더블 팬케이크의 접합 수 감소를 위한 권선 방법에 관한 연구 (A Study on the Winding Method for Reducing Joints of the High Temperature Superconducting Double Pancake Coil)

  • 강재식;조현철;장재영;황영진;이지호;이우승;박영건;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권1호
    • /
    • pp.30-33
    • /
    • 2012
  • A double pancake winding method is widely used to make the superconducting magnet, using high temperature superconductor (HTS) tape. In the double pancake winding method, the joints with contact resistances between double pancake coils are inevitably needed. The electrical joule heating on the contacts causes refrigerant loss during operation. And a space outside the winding, for splices and mechanical support, is more than that for its layer-wound equivalent. In this paper, a double pancake winding method in order to reduce the number of the joints was proposed. Both of the double pancake coils using the conventional winding method and the proposed winding method have been fabricated and tested to make the solution technically feasible in the double pancake winding method. Especially, critical-current tests of the fabricated double pancake coils were conducted in order to show the same performance and confirm contact resistances between double pancake coils.

순간 해석 기법을 이용한 PVT 잔량 측정법의 극저온 균일 온도 조건에서의 실험적 연구 (Experimental research of Pressure-Volume-Temperature mass gauging method using instantaneous analysis under cryogenic homogeneous condition)

  • 서만수;정상권;정영석;구동훈;지동진
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권1호
    • /
    • pp.38-43
    • /
    • 2012
  • In the extreme conditions of launch vehicle in a space, such as cryogenic temperature and low-gravity environment, the mass gauging of remaining propellants becomes a difficult problem. Pressure-volume-temperature (PVT) method is one of the attractive mass gauging methods under low-gravity due to its simplicity and reliability. PVT gauging experiment with various mass flow rates of helium injection is carried out with the experimental apparatus creating cryogenic homogeneous condition as the condition of low-gravity. Experimental results are analyzed by a novel PVT gauging analysis method which considers all instantaneous changes of pressure and temperature in the ullage volume with small time intervals. It is observed that the gauging error from the novel PVT gauging analysis is -0.11% with 2 slpm mass flow rate of helium injection.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

Transient thermal stress of CFRP propellant tank depending on charging speed of cryogenic fluid

  • Jeon, Seungmin;Kim, Dongmin;Kim, Jungmyung;Choi, Sooyoung;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.51-56
    • /
    • 2020
  • In order to increase thrust of the space launch vehicle, liquid oxygen as an oxidizer and kerosene or liquid hydrogen as a fuel are generally used. The oxidizer tank and fuel tanks are manufactured by composite materials such as CFRP (Carbon Fiber Reinforced Plastic) to increase pay load. The thermal stress of the cryogenic propellant tank should be considered because it has large temperature gradient. In this study, to confirm the design integrity of the oxidizer tank of liquid oxygen, a numerical analysis was conducted on the thermal stress and temperature distribution of the tank for various charging speed of the cryogenic fluid from 100 ~ 900 LPM taking into account the evaporation rate of the liquid nitrogen by convective heat transfer outside the tank and boiling heat transfer inside the tank. The thermal stress was also calculated coupled with the temperature distribution of the CFRP tank. Based on the analysis results, the charging speed of the LN2 can majorly affects the charging time and the resultant thermal stress.

고온초전도선을 이용한 초전도전력케이블의 실시간 시뮬레이션 알고리즘 개발 (Development of a Real-Time Simulation Algorithm of HTS Power Cable using HTS Wire)

  • 김재호;박민원;조전욱;심기덕;유인근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권3호
    • /
    • pp.54-58
    • /
    • 2006
  • In this paper, authors developed a real-time simulation algorithm for the power device application of HTS(High Temperature Superconducting) wire by using Real Time Digital Simulator(RTDS). At present, in order to extend the power capacity of some area where has a serious problem of power quality. especially metropolitan complex city, there are so many problems such as right of way for power line routes. space for downtown substations. and the environmental protection, etc. HTS technology can be useful to overcome this problem. Recently, according to the advanced HTS technology, the power application is being researched well. Simulation is required for safety before installation of HTS power cable, a fabrication model used at the power system simulation. This paper describes a real time digital simulation method for the application of HTS wire to power device. For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analysed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better information for installation of HTS power device into a utility network.

Investigation on the tensile properties of glass fiber reinforced polymer composite for its use as a structural component at cryogenic temperature

  • Shrabani Ghosh;Nathuram Chakrobarty;Swapan C. Sarkar
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.43-48
    • /
    • 2023
  • Polymer composites, especially glass fiber reinforced polymer (GFRP) are finding ever-increasing applications in areas such as superconductivity, space technology, cryogenic rocket engines, and cryogenic storage vessels. Various components made of polymer composites are much lighter than their metallic counterparts but have equivalent strength for ultra-low temperature applications. In this paper, we have investigated the tensile properties of an indigenously prepared unidirectional cylindrical hollow composite tube for its use as a neck of the cryogenic vessel. XRD and SEM of the tube are completed before cryogenic conditioning to ascertain the fiber and resin distribution in the matrix. The result shows that for composites, after 15, 30, 45, and 60 minutes of cryogenic conditioning at 77K in a liquid nitrogen bath, the strength and modulus increase significantly with the increase of strain rate and reach the optimum value for 45 minutes of conditioning. The results are encouraging as they will be helpful in assessing the suitability of GFRP in the structural design of epoxy-based components for cryogenic applications.

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.

초전도 한류모듈 내 고온초전도 선재 배치에 따른 교류손실 변화 (AC loss dependency on the arrangement of the HTS wires in the current limiting module for SFCL)

  • 김우석;양성은;이지영;김희선;유승덕;현옥배;김혜림
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.9-12
    • /
    • 2012
  • Usually, the AC loss from the superconducting element of an SFCL due to the load current is very small because it is composed of the combination of bifilar windings with very small reactance. Although the AC loss is small enough, we should be albe to predict for the design and control of the cryogenic system. In fact, an SFCL for the transmission voltage class may not generate ignorable AC loss because of the inevitable space between the HTS wires for the high voltage insulation and cryogenic efficiency. To measure the AC loss dependency on the space between the 2G HTS wires with the width of 4.4 mm, we prepared an experimental setup which could adjust the distance between the wires. We used two 500-mm length HTS wires in parallel and applied the current in the opposite direction for each wire to simulate a part of a current limiting module for a high voltage SFCL. We also put two couples of voltage taps at the ends of each wire and a cancel coil in the voltage measurement circuit to compensate the reactive component from the voltage taps. In this condition, we varied the distance between the wires to investigate the change of the transport current loss. A similar experimental study with HTS wire with the width of 12 mm is now in progress.