• Title/Summary/Keyword: Space cost

Search Result 1,879, Processing Time 0.027 seconds

A Comparative Study on Optimal Generation Maintenance Scheduling with Marginal Maintenance Cost and Levelized Risk Methods (한계보수비용법 및 위험지수 평준화법에 의한 최적전원보수계획의 비교)

  • 이봉용;심건보
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.9-17
    • /
    • 1992
  • Proper resource allocation is also a very important topic in power system problems, especially in operation and planning. One such is optimal maintenance problem in operation and planning. Least cost and highest reliability should be the subjects to be pursued. A probabilistic operation simulation model developed recently by authors is applied to the proboem of optimal maintenance scheduling. Three different methods are compared, marginal maintenance cost, levelized risk and maintenance space. The method by the marginal maintenance costs shows the least cost, the highest reliability and the highest maintenance outage rates. This latter characteristics may considerably influence the results of genetation planning, because the usual maintenance outages obtained from the other methods have shown to be lower.

  • PDF

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

Visual Servoing System Based on Space Variant Imaging for Rehabilitation Robots (공간 변화 영상을 이용한 재활로봇의 비쥬얼 서보잉 시스템에 관한 연구)

  • 송원경;이희영;변증남
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.763-768
    • /
    • 1999
  • The space variant imaging system which mimics the human beings visual system has some merits such as wide field-of-view, the low computational cost and the high accuracy in matching of correspondence points of stereo images. In this presentation, a visual servoing system based on the space variant imaging technique is proposed for the control of the rehabilitation robot arm. The position information of an object obtained by space variant imaging techniques is used for the visual servoing. According to the empirical data, the degree of correlation extracted by the space variant imaging technique is more accurate than that of the space invariant imaging technique.

  • PDF

Vision-based Ground Test for Active Debris Removal

  • Lim, Seong-Min;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

Research of the Formation of Makerspaces in Public Libraries, Based on a Survey on Space Usage and Programs Being Operated (공공도서관 메이커스페이스 조성과 운영 현황조사 분석 연구)

  • Ahn, In-Ja;Noh, Young-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.4
    • /
    • pp.415-436
    • /
    • 2017
  • The paper explores the formation of Makerspace in public libraries, based on a survey on space usage and programs being operated. The respondents targeted librarians in public libraries. The survey is divided into two categories: in space usage section, the questionnaire explores level of openness of the space used; availability of equipment rental services; frequencies of the space rented; cost of management; and the number of people in charge. In program section, the survey asks on types of program being operated; spaces used for the program; age groups of participants, time and budget spent for the programs. The survey resulted in highlighting difficulties in dealing with a lack of equipment, space, and people in charge. The paper therefore raises the need of guidelines for the area, cost, and the equipment needed, based on mid- and long-term consultation with expert groups.

The Economic Comparison of EHP and GHP for Medium Capacity Air-conditioning (중용량 공조에서 EHP와 GHP의 경제성 비교)

  • Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • Cost related to building equipment accounts for about 85% of the life cycle cost of buildings. Therefore proper selection of air-conditioning system is important for reducing the overall cost of buildings. In this study, medium capacity EHP and GHP for air-conditioning a building with a floor area of 1,200 $m^2$ are compared economically. To consider all the factors of initial and operation costs effectively, an annual equal payment method is proposed. For the initial cost, cost of equipment, construction, installation, electric facility, financial subsidy and tax cut is considered. Cost of basic electricity, energy(electricity and gas), space charge, labor, insurance and repair is considered for the operation cost. Under the assumptions made in this study, overall cost of EHP is less than that of GHP, but this is not absolute and different outcome may result if different assumptions are made. This study is useful for those who are interested in choosing an air-conditioning system that costs less for mid-size buildings with simple calculations.

The effects of construction related costs on the optimization of steel frames

  • Choi, Byoung-Han;Gupta, Abhinav;Baugh, John W. Jr.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • This paper presents a computational study that explores the design of rigid steel frames by considering construction related costs. More specifically, two different aspects are investigated in this study focusing on the effects of (a) reducing the number of labor intensive rigid connections within a frame of given geometric layout, and (b) reducing the number of different member section types used in the frame. A genetic algorithm based optimization framework searches design space for these objectives. Unlike some studies that express connection cost as a factor of the entire frame weight, here connections and their associated cost factors are explicitly represented at the member level to evaluate the cost of connections associated with each beam. In addition, because variety in member section types can drive up construction related costs, its effects are evaluated implicitly by generating curves that show the trade off between cost and different numbers of section types used within the frame. Our results show that designs in which all connections are considered to be rigid can be excessively conservative: rigid connections can often be eliminated without any appreciable increase in frame weight, resulting in a reduction in overall cost. Eliminating additional rigid connections leads to further reductions in cost, even as frame weight increases, up to a certain point. These complex relationships between overall cost, rigid connections, and member section types are presented for a representative five-story steel frame.

A Study on the System Design for Deep-Space Probe Reference Model (표준 심우주 탐사선 시스템 설계 연구)

  • Euikeun Kim;Hyeon-Jin Jeon
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.44-57
    • /
    • 2023
  • In order for a latecomer in deep-space exploration such as Korea to quickly keep pace with advanced deep-space exploration countries in the mutually-beneficial space exploration market, it is essential to derive a deep-space probe reference model that can reduce development period and cost. In this paper, concept and configuration for the deep-space probe reference model consisting of basic, lightweight, and expansion types are newly presented, which are based on commonly required designs for various deep-space probes. The proposed configuration adopts modular design so that the expandability and design/implementation efficiency are improved. In addition, the electrical system design pursuing lightweight and expandability is also described, which is applicable to the proposed three-types of deep-space probe reference model.

Autopilot Design for a Target Drone using Rate Gyros and GPS

  • Rhee, Ihnseok;Cho, Sangook;Park, Sanghyuk;Choi, Keeyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.468-473
    • /
    • 2012
  • Cost is an important aspect in designing a target drone, however the poor performance of low cost IMU, GPS, and microcontrollers prevents the use of complex algorithms, such as ARS, or INS/GPS to estimate attitude angles. We propose an autopilot which uses rate gyro and GPS only for a target drone to follow a prescribed path for anti-aircraft training. The autopilot consists of an altitude hold, roll hold, and path following controller. The altitude hold controller uses vertical speed output from a GPS to improve phugoid damping. The roll hold controller feeds back yaw rate after filtering the dutch roll oscillation to estimate the roll angle. The path following controller operates as an outer loop of the altitude and roll hold controllers. A 6-DOF simulation showed that the proposed autopilot guides the target drone to follow a prescribed path well from the view point of anti-aircraft gun training.