• Title/Summary/Keyword: Space averaged

Search Result 204, Processing Time 0.026 seconds

Design of the Broadband PIFA with Multi-Band for SAR Reduction (다중대역을 가지는 SAR 저감용 광대역 PIFA 설계)

  • Choi Donggeun;Shin Hosub;Kim Nam;Kim Yongki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.66-77
    • /
    • 2005
  • This paper proposed a novel broadband PIFA(Planar Inverted-F Antenna) for IMT-2000/WLAN/DMB terminal. Two branch lines for meander line were utilized in order to improve the characteristics of PIFA which usually has a narrow band. The shorting strip between the ground plane and meander-type radiation elements were used in order to minimize the size of the antenna. The -10 dB return loss bandwidth of a realized antenna was $38.2{\%}$(1.84~2.71 GHz), which contains the broadband bandwidth with triple band. And the simulated and measured values of 1 g and 10 g averaged peak SAR on human head caused by the triple band PIFA mounted on folder-type handsets were analyzed and discussed. As a result, the measured 1 g and 10 g averaged peak SARs of PIFA were similar with the simulated values and were lower than the 1.6 W/kg and 2 W/kg of 1 g and 10 g averaged peak SAR limits.

The Singular Position Detection Method from the Measured Path Loss Data for the Cellular Network (이동 통신 망에서 측정하여 계산된 경로 손실의 급격한 변동 위치 추출 방법)

  • Park, Kyung-Tae;Bae, Sung-Hyuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • The path loss data was re-calculated according to the distance between the base station and a mobile station in the mobile telecommunications network. In this paper, the averaged path loss data was plotted with the conventional path loss models(free space, plane earth, Hata model ${\ldots}$). The standard deviations for the 2 Km, 1 Km, 0.5 Km-interval averaged path loss were 2.29 dB, 3.39 dB, 4.75 dB, respectively. Additionally, the derivative values for the 2 Km, 1 Km, 0.5 Km-interval averaged path loss were evaluated to find the positions with more than 1 times or 2times of the standard deviation. The situations with the sharply fluctuated path loss were calculated to 5 positions in the 2 Km interval, to 7 positions in the 1 Km interval, to 19 positions in the 0.5 Km interval, respectively. And, the exact distances between the base station and a mobile station were found with the sharply fluctuated path loss.

Numerical Modeling of Hydrazine-Fueled Arcjet Thruster (하이드라진(N2H4) 아크젯 추력기의 수치적 모델링)

  • Shin, Jae-Ryul;Lee, Dae-Sung;Oh, Se-Jong;Choi, J.-Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.907-915
    • /
    • 2008
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. the Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optical thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition thermo-physical process inside the arcjet thruster is understood from the flow field results.

Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall (벽면에 근접한 사각주 후면의 와류 유동장 수동제어)

  • Lee, Bo-Sung;Kim, Tae-Yoon;Lee, Do-Hyung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Unsteady vortex shedding behind a rectangular cylinder near a wall influences both increasing of drag and dynamic stability of heavy vehicle, bridge or building. Incompressible Averaged Navier-Stokes equation with modified ${\varepsilon}-SST$ turbulence model is adapted for investigating the flow field between the rectangular cylinder and the wall. In case the vortex shedding happens, not only the averaged maximum velocity is higher than other cases, but the position of the maximum velocity is closer to the lower surface of rectangular cylinder. On this study, it is confirmed that the vortex shedding behind a rectangular cylinder can be suppressed by the passive control method added by horizontal and vertical fences to the lower surface of rectangular cylinder.

Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers (전산유체역학을 이용한 항공기 프로펠러 공력특성 연구)

  • Cho, Kyuchul;Kim, Hyojin;Park, Il-Ju;Jang, Sungbok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.917-926
    • /
    • 2012
  • The analysis of aerodynamic characteristics for aircraft propellers is studied to develop high efficiency composite propellers. It is to verify the accuracy and reliability of predicting the efficiency characteristics of aircraft propellers by applying nonlinear numerical analysis. The numerical simulation method incorporated the CFD code, which is based on RANS (Reynolds Averaged Navier-Stocks) equation. The study includes a comparative analysis between the numerical simulation results and the wind tunnel test results of the full-scale aircraft propeller. The comparison shows that thrust and power coefficients of the propeller calculated by nonlinear numerical analysis are higher than those based on the results generated from the wind tunnel test. The efficiency of the propeller calculated by numerical analysis matches closely to the efficiency based on the wind tunnel test results. The verification results are analyzed, then, will be used in optimizing the design and manufacture of the subject aircraft propeller studied.

A Clinical Anatomic Study of Internal Mammary Perforators as Recipient Vessels for Breast Reconstruction

  • Baek, In-Soo;You, Jae-Pil;Rhee, Sung-Mi;Son, Gil-Su;Kim, Deok-Woo;Dhong, Eun-Sang;Park, Seung-Ha;Yoon, Eul-Sik
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.761-765
    • /
    • 2013
  • Background Partially resecting ribs of the recipient site to facilitate easy anastomosis of the internal mammary vessels to free flaps during breast reconstruction can cause chest wall pain or deformities. To avoid this, the intercostal perforating branches of the internal mammary vessels can be used for anastomosis. The purpose of this study was to investigate the location and size of the internal mammary perforator vessels based on clinical intraoperative findings and to determine their reliability as recipient vessels for breast reconstruction with microsurgical free tissue transfer. Methods Twelve patients were preoperatively screened for the presence of internal mammary perforators using Doppler tracing. After modified radical mastectomy was performed by a general surgeon, the location and size of the internal mammary perforator vessels were microscopically investigated. The external diameter was examined using a vessel-measuring gauge from a mechanical coupling device, and the distance from the mid-sternal line to the perforator was also measured. Results The largest arterial perforator averaged 1.5 mm, and the largest venous perforator averaged 2.2 mm. Perforators emerging from the second intercostal space had the largest average external diameter; the second intercostal space also had the largest number of perforators arising from it. The average distance from the mid-sternal line to the perforator was 20.2 mm. Conclusions Internal mammary perforators presented consistent and reliable anatomy in this study. Based on these results, the internal mammary perforators appear to have a suitable diameter for microvascular anastomosis and should be considered as an alternative recipient vessel to the internal mammary vessel.

Distraction Arthroplasty as Treatment for Ankle Osteoarthritis (신연 관절 성형술을 이용한 족근 관절 골관절염의 치료증)

  • Park, Yong-Wook;Kim, Do-Young;Lee, Sang-Soo;Lim, Chang-Kyun;Park, Hyun-Chul
    • Journal of Korean Foot and Ankle Society
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2002
  • Purpose: To evaluate the effectiveness of distraction arthroplasty as treatment for moderate or severe ankle osteoarthritis Materials and Methods: Thirteen patients who underwent distraction arthroplasty using the Ilizarov external fixator were available. We removed osteophytes around the ankle before applying the external fixator. We encourage the patients to do active range of motion exercise and to walk with cruch. Follow-up averaged 15 months (range, 10-31 months). Both the patients' postoperative satisfaction and the radiographic joint space were retrospectively evaluated. Results: The duration from applying the external fixator to remove was 12 weeks. Breakage of the wire applied to the forefoot occurred in 2 cases. All patients satisfied with the postoperative clinical results. The ankle joint space averaged $1.6{\pm}0.2mm$ in pre-operative, $4.2{\pm}0.9mm$ in post-Ilizarov external fixator's removal, and $2.3{\pm}0.3mm$ in last follow-up ankle lateral view. Conclusion: We think that distraction arthroplasty with external fixator is useful operative method for the moderate or severe ankle osteoarthritis.

  • PDF

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

Developing GPS Code Multipath Grid Map (CMGM) of Domestic Reference Station (국내 기준국의 GPS 코드 다중경로오차 격자지도 생성)

  • Gyu Min Kim;Gimin Kim;Chandeok Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • This study develops a Global Positioning System (GPS) Code Multipath Grid Map (CMGM) of each individual domestic reference station from the extracted code multipath of measurement data. Multipath corresponds to signal reflection/refraction caused by obstacles around the receiver antenna, and it is a major source of error that cannot be eliminated by differencing. From the receiver-independent exchange format (RINEX) data for two days, the associated code multipath of a satellite tracking arc is extracted. These code multipath data go through bias correction and interpolation to yield the CMGM with respect to the azimuth and elevation angles. The effect of the CMGM on multipath mitigation is then quantitatively analyzed to improve the Root Mean Square (RMS) of averaged pseudo multipath. Furthermore, the single point positioning (SPP) accuracy is analyzed in terms of the RMS of the horizontal and vertical errors. During two weeks in February 2023, the RMSs of the averaged pseudo multipath for five reference stations decreased by about 40% on average after CMGM application. Also, the SPP accuracies increased by about 7% for horizontal errors and about 10% for vertical errors on average after CMGM application. The overall quantitative analysis indicates that the proposed approach will reduce the convergence time of Differential Global Navigation Satellite System (DGNSS), Real-Time Kinematic (RTK), and Precise Point Positioning (PPP)-RTK correction information in real-time to use measurement data whose code multipath is corrected and mitigated by the CMGM.

A Numerical Analysis of Supersonic Intake Buzz in an Axisymmetric Ramjet Engine

  • Yeom, Hyo-Won;Sung, Hong-Gye;Yang, Vigor
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.165-176
    • /
    • 2015
  • A numerical analysis was conducted to investigate the inlet buzz and combustion oscillation in an axisymmetric ramjet engine with wedge-type flame holders. The physical model of concern includes the entire engine flow path, extending from the leading edge of the inlet center-body through the exhaust nozzle. The theoretical formulation is based on the Farve-averaged conservation equations of mass, momentum, energy, and species concentration, and accommodates finite-rate chemical kinetics and variable thermo-physical properties. Turbulence closure is achieved using a combined scheme comprising of a low-Reynolds number k-${\varepsilon}$ two-equation model and Sarkar's compressible turbulence model. Detailed flow phenomena such as inlet flow aerodynamics, flame evolution, and acoustic excitation as well as their interactions, are investigated. Mechanisms responsible for driving the inlet buzz are identified and quantified for the engine operating at subcritical conditions.