• Title/Summary/Keyword: Space averaged

Search Result 204, Processing Time 0.018 seconds

Investigation on Prediction Methods for a Rotor Averaged Inflow in Forward Flight (전진비행하는 회전익기 로터의 평균 유입류 예측기법 연구)

  • Hwang, Chang-Jeon;Chung, Ki-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Prediction methods for a rotor averaged inflow in forward flight are investigated in this study. The investigated methods are Drees linear inflow model, Mangler & Squire model and free vortex wake(FVW) method. Predictions have been performed for a four-blade rotor operating at three different advance ratios i.e. 0.15, 0.23 and 0.30, at which experimental data are available. According to results, Drees model has a limitation for the inflow non-uniformity prediction due to an inherent linear characteristics. Mangler & Squire model has a reasonable accuracy except the disk edge region. KARI FVW method has very good accuracy and has better accuracy than the other FVW method especially in inboard region. However, there are some discrepancies in retreating side due to the dynamic stall effect and in near hub region due to the fuselage upwash effect.

Resonance Capture for a Mercurian Orbiter in the Vicinity of Sun

  • Khattab, Elamira Hend;El-Salam, Fawzy Ahmed Abd;Rahoma, Walid A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.93-103
    • /
    • 2021
  • In this work, the problem of resonance caused by some gravitational potentials due to Mercury and a third body, namely the Sun, together with some non-gravitational perturbations, specifically coronal mass ejections and solar wind in addition to radiation pressure, are investigated. Some simplifying assumptions without loss of accuracy are employed. The considered force model is constructed. Then the Delaunay canonical set is introduced. The Hamiltonian of the problem is obtained then it is expressed in terms of the Deluanay canonical set. The Hamiltonian is re-ordered to adopt it to the perturbation technique used to solve the problem. The Lie transform method is surveyed. The Hamiltonian is doubly averaged. The resonance capture is investigated. Finally, some numerical simulations are illustrated and are analyzed. Many resonant inclinations are revealed.

Numerical Analysis on Screech Tone in a Supersonic Jet (숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with a modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures and large-scale instability waves.

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun;Ozawa, Tohru
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.373-390
    • /
    • 2018
  • In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.

Integer Ambiguity Search Technique Using SeparatedGaussian Variables

  • Kim, Do-Yoon;Jang, Jae-Gyu;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Real-Time Kinematic GPS positioning is widely used for many applications.Resolving ambiguities is the key to precise positioning. Integer ambiguity resolution isthe process of resolving the unknown cycle ambiguities of double difference carrierphase data as integers. Two important issues of resolving are efficiency andreliability. In the conventional search techniques, we generally used chi-squarerandom variables for decision variables. Mathematically, a chi-square random variableis the sum of mutually independent, squared zero-mean unit-variance normal(Gaussian) random variables. With this base knowledge, we can separate decisionvariables to several normal random variables. We showed it with related equationsand conceptual diagrams. With this separation, we can improve the computationalefficiency of the process without losing the needed performance. If we averageseparated normal random variables sequentially, averaged values are also normalrandom variables. So we can use them as decision variables, which prevent from asudden increase of some decision variable. With the method using averaged decisionvalues, we can get the solution more quicklv and more reliably.To verify the performance of our proposed algorithm, we conducted simulations.We used some visual diagrams that are useful for intuitional approach. We analyzedthe performance of the proposed algorithm and compared it to the conventionalmethods.

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Eddy Momentum, Heat, and Moisture Transports During the Boreal Winter: Three Reanalysis Data Comparison (북반구 겨울철 에디들에 의한 운동량, 열 그리고 수분 수송: 세 가지 재분석 자료 비교)

  • Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.649-663
    • /
    • 2016
  • This study investigates eddy transports in terms of space and time for momentum, heat, and moisture, emphasizing comparison of the results in three reanalysis data sets including ERA-Interim from the European Center for Medium-range Weather Forecasts (ECMWF), NCEP2 from the National Center for Environmental Prediction and the Department of Energy (NCEP-DOE), and JRA-55 from the Japan Meteorological Agency (JMA) during boreal winter. The magnitudes for eddy transports of momentum in ERA-Interim are represented as the strongest value in comparison of three data sets, which may be mainly come from that both zonal averaged meridional and zonal wind tend to follow the hierarchy of ERA-Interim, NCEP2, and JRA-55. Whereas in relation to heat and moisture eddy transports, those of NCEP2 are the strongest, implying that zonal averaged air temperature (specific humidity) tend to follow the raking of NCEP2, ERA-Interim, and JRA-55 (NCEP2, JRA-55, and ERA-Interim), except that transient eddy transports for heat in ERA-Interim are the strongest involving both meridional wind and air temperature. The stationary and transient eddy transports in the context of space and time correlation, and intensity of standard deviation demonstrate that the correlation (intensity of standard deviation) influence the structure (magnitude) of eddy transports. The similarity between ERA-Interim and NCEP2 (ERA-Interim and JRA-55) of space correlation (time correlation) closely resembles among three data sets. A resemblance among reanalysis data sets of space correlation is larger than that of time correlation.

Seasonal Variation of Meteor Decay Times Observed at King Sejong Station ($62.22^{\circ}S$, $58.78^{\circ}W$), Antarctica

  • Kim, Jeong-Han;Kim, Yong-Ha;Lee, Chang-Sup;Jee, Geon-Hwa
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.29.4-30
    • /
    • 2010
  • A VHF meteor radar at King Sejong Station ($162.22^{\circ}S$, $58.78^{\circ}W$), Antarctica has been observing meteors during a period of March 2007-July 2009. We analyzed the height profiles of the observed meteor decay times between 70 and 95 km by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season in the range of 80~85 km: higher peak in southern spring and summer than in fall and winter. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal, as effective recombination rates measured by rocket experiments. The height profiles of 15-min averaged decay times show a clear increasing trend with decreasing altitude from 95 km to the peak altitude, especially for weak meteors. This feature for weak meteors is well explained by ambipolar diffusion of meteor trails, allowing one to estimate atmospheric temperatures and pressures, as in previous studies. However, the strong meteors show not only significant scatters but also different slope of the increasing trend from 95 km to the peak altitude. Therefore, atmospheric temperature estimation from meteor decay times should be applied for weak meteors only. In this study, we present the simple model decay times to explain the height profiles of the observed decay times and discuss the additional removal processes of meteor trail electrons through the empirical recombination and by icy particles.

  • PDF

Long-term variation of total electron contents over Daejeon measured from Global Positioning System between 2000 and 2010

  • Lee, Chi-Na;Chung, Jong-Kyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.27.1-27.1
    • /
    • 2011
  • This study is about the ionospheric variation on the Korean Peninsula using GPS TEC data from Daejeon IGS GPS site. It has accumulated the 11 years GPS data from 2000. In this work, the hourly and daily averaged TEC data are used. Data period covers a full solar cycle from 2000 to 2010 (11 years) which the total observed days are 98%. The mean TEC data shows the annual/semiannual variation, solar cycle and 27 days. GPS TEC has a good correlation with solar F10.7 index. We also compare with planetary Kp and AE indices. The maximum of the daily mean GPS TEC is around 50 TECU at 2000 and that value of 2009 is near 10 TECU. we confirms that the GPS TEC is a good indicator for ionospheric variation for the mid-latitudinal region to understand the ionospheric climatology over Korea Peninsula.

  • PDF