Browse > Article
http://dx.doi.org/10.5140/JASS.2021.38.2.93

Resonance Capture for a Mercurian Orbiter in the Vicinity of Sun  

Khattab, Elamira Hend (Department of Astronomy and Space Science, Faculty of Science, Cairo University)
El-Salam, Fawzy Ahmed Abd (Department of Astronomy and Space Science, Faculty of Science, Cairo University)
Rahoma, Walid A. (Department of Astronomy and Space Science, Faculty of Science, Cairo University)
Publication Information
Journal of Astronomy and Space Sciences / v.38, no.2, 2021 , pp. 93-103 More about this Journal
Abstract
In this work, the problem of resonance caused by some gravitational potentials due to Mercury and a third body, namely the Sun, together with some non-gravitational perturbations, specifically coronal mass ejections and solar wind in addition to radiation pressure, are investigated. Some simplifying assumptions without loss of accuracy are employed. The considered force model is constructed. Then the Delaunay canonical set is introduced. The Hamiltonian of the problem is obtained then it is expressed in terms of the Deluanay canonical set. The Hamiltonian is re-ordered to adopt it to the perturbation technique used to solve the problem. The Lie transform method is surveyed. The Hamiltonian is doubly averaged. The resonance capture is investigated. Finally, some numerical simulations are illustrated and are analyzed. Many resonant inclinations are revealed.
Keywords
resonance capture; merecurian gravity; third body perturbations; solar wind;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abd El-Salam FA, El-Tohamy IA, Ahmed MK, Rahoma WA, Rassem MA, Invariant relative orbits for satellite constellations: a second order theory, Appl. Math. Comput. 181, 6-20 (2006). https://doi.org/10.1016/j.amc.2006.01.004   DOI
2 Arfken GB, Weber HJ, Harris FE, Mathematical Methods for Physicists: A Comprehensive Guide (Academic Press, Waltham, MA, 2012).
3 Breen AR, Riley P, Lazarus AJ, Canals A, Fallows RA, et al., The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations, Ann. Geophys., Eur. Geosci. Union. 20, 1291-1309 (2002). https://doi.org/10.5194/angeo-20-1291-2002   DOI
4 Breiter S, Extended fundamental model of resonance, Celest. Mech. Dyn. Astron. 85, 209-218 (2003). https://doi.org/10.1023/A:1022569419866   DOI
5 Breiter S, Lunisolar apsidal resonances at low satellite orbits, Celest. Mech. Dyn. Astron. 74, 253-274 (1999). https://doi.org/10.1023/A:1008379908163   DOI
6 Breiter S, Lunisolar resonances revisited, Celest. Mech. Dyn. Astron. 81, 81-91 (2001b). https://doi.org/10.1023/A:1013363221377   DOI
7 Breiter S, On the coupling of lunisolar resonances for Earth satellite orbits, Celest. Mech. Dyn. Astron. 80, 1-20 (2001a). https://doi.org/10.1023/A:1012284224340   DOI
8 Broucke RA, Long-term third-body effects via double averaging, J. Guid. Control Dyn. 26, 27-32 (2003). https://doi.org/10.2514/2.5041   DOI
9 Carvalho JPS, Moraes RV, Prado AFBA, Nonsphericity of the moon and near sun-synchronous polar lunar orbits, Math. Probl. Eng. 2009, 740460 (2009a). https://doi.org/10.1155/2009/740460   DOI
10 Anselmo L, Bertotti B, Farinella P, Milani A, Nobili AM, Orbital perturbations due to radiation pressure for a spacecraft of complex shape, Celest. Mech. 29, 27-43 (1983). https://doi.org/10.1007/BF01358596   DOI
11 Deprit A, Canonical transformations depending on a small parameter, Celest. Mech. 1, 12-30 (1969). https://doi.org/10.1007/BF01230629   DOI
12 Carvalho JPS, Moraes RV, Prado AFBA, Semi-analytic theory of a Moon artificial satellite considering lunar oblateness and perturbations due to a third-body in elliptic orbit, Proceedings of the 7th Brazilian Conference on Dynamics, Control and Applications, Presidente Prudente, Brazil, 7-9 May 2008.
13 Carvalho JPS, Moraes RV, Prado AFBA, Some orbital characteristics of lunar artificial satellites, Celest. Mech. Dyn. Astron. 108, 371-388 (2010). https://doi.org/10.1007/s10569-010-9310-6   DOI
14 Celletti A, Chierchia L, Hamiltonian stability of spin-orbit resonances in celestial mechanics, Celest. Mech. Dyn. Astron. 76, 229-240 (2000). https://doi.org/10.1023/A:1008341317257   DOI
15 Chametla RO, D'Angelo G, Reyes-Ruiz M, Javier Sanchez-Salcedo F, Capture and migration of Jupiter and Saturn in mean motion resonance in a gaseous protoplanetary disc, Mon. Notices Royal Astron. Soc. 492, 6007-6018 (2020). https://doi.org/10.1093/mnras/staa260   DOI
16 Cook GE, Luni-solar perturbations of the orbit of an Earth satellite, Geophys. J. Int. 6, 271-291 (1962). https://doi.org/10.1111/j.1365-246X.1962.tb00351.x   DOI
17 Costa Filho OO, Sessin W, The extended Delaunay method applied to first order resonance, Celest. Mech. Dyn. Astron. 74, 1-17 (1999). https://doi.org/10.1023/A:1008310827412   DOI
18 Domingos RC, Vilhena de Moraes R, Prado AFBA, Third-body perturbation in the case of elliptic orbits for the disturbing body, Math. Probl. Eng. 2008, 763654 (2008). https://doi.org/10.1155/2008/763654   DOI
19 Delhaise F, Morbidelli A, Luni-solar effects of geosynchronous orbits at the critical inclination, Celest. Mech. Dyn. Astron. 57, 155-173 (1993). https://doi.org/10.1007/BF00692471   DOI
20 Celletti A, Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous resonance (part I), Z. Angew. Math. Phys. 41, 174-204 (1990). https://doi.org/10.1007/BF00945107   DOI
21 El-Enna AA, Ahmed MKM, Abd El-Salam FA, Analytical treatment of the relativistic and solar radiation pressure effects on an artificial satellite, Appl. Math. Comput. 175, 1525-1542 (2006). https://doi.org/10.1016/j.amc.2005.09.001   DOI
22 El-Saftawy MI, Analytical study of the resonance caused by solar radiation pressure on a spacecraft, Astrophys. Space Sci. 295, 407-419 (2005). https://doi.org/10.1007/s10509-005-6563-8   DOI
23 El-Saftawy MI, Ahmed MKM, Helali YE, The effect of direct solar radiation pressure on a spacecraft of complex shape, Astrophys. Space Sci. 259, 141-149 (1998). https://doi.org/10.1023/A:1001517205529   DOI
24 Ferrer S, Osacar C, Harrington's Hamiltonian in the stellar problem of three bodies: reductions, relative equilibria and bifurcations. Celest. Mech. Dyn. Astron. 58, 245-275 (1994). https://doi.org/10.1007/BF00691977   DOI
25 Fitzpatrick PM, Principles of Celestial Mechanics (Academic Press, New York, NY, 1970).
26 Folta D, Quinn D, Lunar frozen orbits, in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Co, 21-24 Aug 2006.
27 Henrard J, Caranicolas ND, Motion near the 3/1 resonance of the planar elliptic restricted three body problem, Celest. Mech. Dyn. Astron. 47, 99-121 (1989). https://doi.org/10.1007/BF00051201   DOI
28 Gilthorpe MS, Moore P, Winterbottom AN, Analysis of the orbital elements of the satellite COSMOS 1603 (1984-106A) at 14th-order resonance, Planet. Space Sci. 38, 1147-1159 (1990). https://doi.org/10.1016/0032-https://doi.org/10.1016/0032-0633(90)90023-J0633(90)90023-J   DOI
29 Abd El-Salam FA, Perturbative effects on a Mercurian orbiter due to the solar radiation pressure, solar wind and the coronal mass ejections, New Astron. 12, 490-496 (2007). https://doi.org/10.1016/j.newast.2007.02.002   DOI
30 Carvalho JPS, Moraes RV, Prado AFBA, Non-sphericity of the moon and critical inclination, Proceedings of the 32nd Congresso Nacional de Matematica Aplicada e Computacional, Cuiab, Brazil, 10-20 Sep 2009b.
31 Khattab EH, Radwan M, Rahoma WA, Frozen orbits construction for a lunar solar sail, J. Astron. Space Sci. 37, 1-9 (2020). https://doi.org/10.5140/JASS.2020.37.1.1   DOI
32 Kozai Y, Effects of solar radiation pressure on the motion of an artificial satellite, Smithsonian Contrib. Astrophys. 6, 109 (1963).
33 Lewis JS, Physics and Chemistry of the Solar System (Academic Press, Waltham, MA, 2004).
34 Kwok JH, Doubly averaging method for third body perturbations, AAS Paper 91-464 (1991).
35 Kwok JH, Long-term orbit prediction using an averaging method, AIAA Paper 84-1985 (1985).
36 Lara M, Design of long-lifetime lunar orbits: a hybrid approach, Acta Astronaut. 69, 186-199 (2011). https://doi.org/10.1016/j.actaastro.2011.03.009   DOI
37 Musen P, The influence of the solar radiation pressure on the motion of an artificial satellite, J. Geophys. Res. 65, 1391-1396 (1960). https://doi.org/10.1029/JZ065i005p01391   DOI
38 Prado AFBA, Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 26, 33-40 (2003). https://doi.org/10.2514/2.5042   DOI
39 Rahoma W, Orbital elements evolution due to a perturbing body in an inclined elliptical orbit, J. Astron. Space Sci. 31, 199-204 (2014). https://doi.org/10.5140/JASS.2014.31.3.199   DOI
40 Rahoma W, Abd El-Salam F, The effects of Moon's uneven mass distribution on the critical inclinations of a lunar orbiter, J. Astron. Space Sci. 31, 285-294 (2014). https://doi.org/10.5140/JASS.2014.31.4.285   DOI
41 Rahoma WA, Khattab EH, Abd El-Salam FA, Relativistic and the first sectorial harmonics corrections in the critical inclination, Astrophys. Space Sci. 351, 113-117 (2014). https://doi.org/10.1007/s10509-014-1811-4   DOI
42 Rickman H, Froeschle C, A keplerian method to estimate perturbations in the restricted three-body problem, Moon Planets. 28, 69-86 (1983). https://doi.org/10.1007/BF01371674   DOI
43 Pichierri G, Morbidelli A, Crida A, Capture into first-order resonances and long-term stability of pairs of equal-mass planets, Celest. Mech. Dyn. Astron. 130, 54 (2018). https://doi.org/10.1007/s10569-018-9848-2   DOI
44 Szebehely V, Perturbations of the regularized equations of the restricted problem of three bodies, Astron. J. 69, 309-315 (1964). https://doi.org/10.1086/109275   DOI
45 Lara M, Three-body dynamics around the smaller primary. Application to the design of science orbits, J. Aerosp. Eng. Sci. Appl. 2, 53-65 (2010). https://doi.org/10.7446/jaesa.0201.06   DOI
46 Lari G, Saillenfest M, Fenucci M, Long-term evolution of the Galilean satellites: the capture of Callisto into resonance, Astron. Astrophys. 639, A40 (2020). https://doi.org/10.1051/0004-6361/202037445   DOI
47 Kamel AA, Expansion formulae in canonical transformations depending on a small parameter, Celest. Mech. 1, 190-199 (1969). https://doi.org/10.1007/BF01228838   DOI
48 Roth EA, Construction of a consistent semianalytic theory of a planetary or moon orbiter perturbed by a third body, Celest. Mech. 28, 155-169 (1982). https://doi.org/10.1007/BF01230668   DOI
49 Scheeres DJ, Guman MD, Villac BF, Stability analysis of planetary satellite orbiters: application to the Europa orbiter, J. Guid. Control Dyn. 24, 778-787 (2001). https://doi.org/10.2514/2.4778   DOI
50 Sehnal L, Non-gravitational forces in satellite dynamics, in Satellite Dynamics, eds. Giacaglia GEO, Stickland AC (Springer, Berlin, 1975).
51 Sehnal L, Radiation pressure effects in the motion of artificial satellites, in Dynamics of Satellites (1969), ed. Morando B (Springer, Berlin, 1970), 262-272.