• Title/Summary/Keyword: Space Velocity

Search Result 1,845, Processing Time 0.026 seconds

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

A Simplified Numerical Method for Simulating the Generation of Linear Waves by a Moving Bottom (바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 간편 수치해석 기법)

  • Jae-Sang Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • In this study, simplified linear numerical method that can simulate wave generation and transformation by a moving bottom is introduced. Numerical analysis is conducted in wave number domain after continuity equation, linear dynamic and kinematic free surface boundary conditions and linear kinematic bottom boundary condition are Fourier transformed, and the results are expressed in space domain by an inverse Fourier transform. In the wavenumber domain, the dynamic free water surface boundary condition and the kinematic free water surface boundary condition are numerically calculated, and the velocity potential in the mean water level (z = 0) satisfies the continuity equation and the kinematic bottom boundary condition. Wave generation and transformation are investigated when the triangular and rectangular shape of bottoms move periodically. The results of the simplified numerical method are compared with the results of previous analytical solutions and agree well with them. Stability of numerical results according to the calculation time interval (Δt) and the calculation wave number interval (Δk) was also investigated. It was found that the numerical results were appropriate when Δt ≤ T(period)/1000 and Δk ≤ π/100.

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

Effects of Mg Addition to Cu/Al2O3 Catalyst for Low-Temperature Water Gas Shift (LT-WGS) Reaction

  • Zakia Akter Sonia;Ji Hye Park;Wathone Oo;Kwang Bok Yi
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2023
  • To investigate the effects of Mg addition at different aging times and temperatures, Cu/MgO/Al2O3 catalysts were synthesized for the low-temperature water gas shift (LT-WGS) reaction. The co-precipitation method was employed to prepare the catalysts with a fixed Cu amount of 30 mol% and varied amounts of Mg/Al. Synthesized catalysts were characterized using XRD, BET, and H2-TPR analysis. Among the prepared catalysts, the highest CO conversion was achieved by the Cu/MgO/Al2O3 catalyst (30/40/30 mol%) with a 60 ℃ aging temperature and a 24 h aging time under a CO2-rich feed gas. Due to it having the lowest reduction temperature and a good dispersion of CuO, the catalyst exhibited around 65% CO conversion with a gas hourly space velocity (GHSV) of 14,089 h-1 at 300 ℃. However, it has been noted that aging temperatures greater or less than 60 ℃ and aging times longer than 24 h had an adverse impact, resulting in a lower surface area and a higher reduction temperature bulk-CuO phase, leading to lower catalytic activity. The main findings of this study confirmed that one of the main factors determining catalytic activity is the ease of reducibility in the absence of bulk-like CuO species. Finally, the long-term test revealed that the catalytic activity and stability remained constant under a high concentration of CO2 in the feed gas for 19 h with an average CO conversion of 61.83%.

A Stochastic Model for the Nuclide Migration in Geologic Media Using a Continuous Time Markov Process (연속시간 마코프 프로세스를 이용한 지하매질에서의 통계적 핵종이동 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.154-165
    • /
    • 1993
  • A stochastic method using continuous time Markov process is presented to model the one-dimensional convective nuclide transport in geologic media, which have usually heterogeneous feature in physical/geochemical parameters such as velocity, dispersion coefficient, and retardation factor resulting poor description by conventional deterministic advection-dispersion model. The primary desired quantities from a stochastic model are the mean values and variance of the state variables as a function of time. The time-dependent probability distributions of nuclides are presented for each discretized compartment given the volumetric groundwater flux and the intensity of transition. Since this model is discrete in medium space, physical/geochemical parameters which affect nuclide transport can be easily incorporated for the heterogeneous media as well as remarkably layered media having spatially varied parameters. Even though the Markov process model developed in this study was shown to be sensitive to the number of discretized compartments showing numerical dispersion as the number of compartments are increased, this could be easily calibrated by comparing with the analytical deterministic model.

  • PDF

Artifacts due to Retrograde Flow in the Artery and Their Elimination in 2D TOF MR Angiography (2D TOF 자기공명 혈관조영술에서 동맥혈류의 역류로 인한 영상훼손과 이의 제거)

  • Jung, K.J.;Lee, J.K.;Kim, S.K.;Park, S.H.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • Dark band artifacts are often observed in angiograms of arteries obtained by 2D time-of-flight (TOF) angiography with saturation of veins by presaturation RF pulses. At some arteries the arterial blood velocity varies in a triphasic pattern during a cardiac cycle. The arterial blood, that is saturated by presaturation RF pulses in the saturation band, can flow back into the imaging slice during the retrograde flow phase of the triphasic variation. When such saturated retrograde flow occurs during the acquisition of the central part of the K space, a signal void can result in base images and consequently dark band artifacts can appear in angiograms. This phenomenon is experimentally demonstrated by varying the gap between the imaging slice and the saturation band. Furthermore, a new pulse sequence is proposed to eliminate the dark band artifacts by changing the profile of the saturation band front a rectangle to a ramp.

  • PDF

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF

Hydrogen Production from Pyrolysis Oil of Waste Plastic on 46-3Q Catalyst (46-3Q 촉매 상에서 폐플라스틱의 열분해 오일로부터 수소 제조 )

  • SEUNGCHEOL SHIN;HANEUL JUNG;DANBEE HAN;YOUNGSOON BAEK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.601-607
    • /
    • 2023
  • Pyrolysis oil (C5-C20) produced using plastic non-oxidative pyrolysis technology produces naphtha oil (C5-C10) through a separation process, and naphtha oil produces hydrogen through a reforming reaction to secure economic efficiency and social and environmental benefits. In this study, waste plastic pyrolysis oil was subjected to a steam reforming reaction on a commercialized catalyst of 46-3Q And it was found that the 46-3Q catalyst reformed the pyrolysis oil to produce hydrogen. Therefore, an experiment was performed to increase hydrogen yield and minimize the byproduct of ethylene. The reaction experiment was performed using actual waste plastic oil (C8-C11) with temperature, steam/carbon ratio (S/C) ratio, and space velocity as variables. We studied reaction conditions that can maximize hydrogen yield and minimize ethylene byproducts.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

Design of Acoustic Source Array Using the Concept of Holography Based on the Inverse Boundary Element Method (역 경계요소법에 기초한 음향 홀로그래피 개념에 따른 음원 어레이 설계)

  • Cho, Wan-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.260-267
    • /
    • 2009
  • It is very difficult to form a desired complex sound field at a designated region precisely as an application of acoustic arrays, which is one of important objects of array systems. To solve the problem, a filter design method was suggested, which employed the concept of an inverse method using the acoustical holography based on the boundary element method. In the acoustical holography used for the source identification, the measured field data are employed to reconstruct the vibro-acoustic parameters on the source surface. In the analogous problem of source array design, the desired field data at some specific points in the sound field was set as constraints and the volume velocity at the surface points of the source plane became the source signal to satisfy the desired sound field. In the filter design, the constraints for the desired sound field are set, first. The array source and given space are modelled by the boundary elements. Then, the desired source parameters are inversely calculated in a way similar to the holographic source identification method. As a test example, a target field comprised of a quiet region and a plane wave propagation region was simultaneously realized by using the array with 16 loudspeakers.