• Title/Summary/Keyword: Space Vehicle

Search Result 1,603, Processing Time 0.021 seconds

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility (지상시험장비를 통한 우주발사체 고공환경모사 기법 연구)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.914-921
    • /
    • 2017
  • The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.

Development Trend of Perspective Methane Rocket Engines for Space Development (우주개발을 위한 차세대 메탄엔진 개발 동향)

  • Jeong, Gijeong;Bae, Jinhyun;Jeong, Seokgyu;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.558-565
    • /
    • 2017
  • Recently, there has been a tendency to lead the private sector in the launch vehicle market, and as the market has become saturated, efforts are being made to reduce the launch cost. Advanced countries in space development have promoted manned long-range space exploration plans. As oxygen/methane is more efficient, lower cost, and eco-friendly than typical propellants, and can be produced locally on an alien planet, it is the most suitable next-generation propellant to meet this trend. Now methane engine development is accelerating due to changes in international conditions and corporate environment. It is also expected to develop a methane engine in order to survive in this global trend and to keep up with the launch vehicle market in the future.

Cost Model for Annual Cost Spread Estimation of Space Launch Vehicle Development (발사체 개발의 연차별 비용 추정을 위한 비용모델 개발)

  • Kim, Hong-Rae;Yoo, Dong-Seo;Choi, Jong-Kwon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.576-584
    • /
    • 2011
  • In order to develop a launch vehicle successfully, it is important to estimate development costs accurately but it is also important to plan the annual budget. In this paper, the statistical method was utilized for cost spreading. For cost spread modeling, the suitability of the model by analyzing several statistical models was evaluated and consequently, the beta-distribution model has been selected. In this study, the validity of the annual estimation cost model was verified through the comparison of the actual development cost distribution and the estimating cost distribution of Space Shuttle Main Engine. In addition, this paper estimated the annual budget required for the development of the KSLV-II using currently allocated cost for successful development. It is anticipated that the present cost spread model can be applied to not only launch vehicle development but also other large complex system development.

Impacts of Payload Weights on the Cost Effectiveness of Reusable Launch Vehicles (재사용발사체의 비용 효용성에 미치는 임무중량의 영향)

  • Yang, Soo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Recently, in the space market, there has been a rapid reduction of the launch price. The major reason is that a few commercial companies, especially SpaceX, began to enter into the space market about ten years ago, which has changed the space market from monopolization to competition, and accelerated the adoption of commercial efficiency in the technology and management. Also, the successful landing and recovery of a first stage in 2016 by SpaceX proved to be a prelude to opening a new era of reusable launch vehicles, and SpaceX declared the groundbreaking launch price through using the reusable launch vehicle. This study calculates the total launch cost required to put a certain satellite into the LEO, compares the launch cost in three cases with different payload weights, and reviews the impacts of the payload on the cost effectiveness of a reusable vehicle. The total launch cost is divided into 6 subsections cost, namely development cost, production cost, refurbishment cost, operation cost, fixed-cost of factory and launch site, and insurance cost. The cost estimation relationships used in the calculation are taken from the commonly proven cost models such as TRANSCOST.

Study on Pedestrian Protection device in collision using Pneumatic cylinder and simple link mechanism (공압 실린더 및 단순 링크기구를 이용한 충돌 보행자 보호 장치에 관한 연구)

  • Noh, S.H.;Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.64-71
    • /
    • 2008
  • This study is on pedestrian protection device using pneumatic cylinder and simple link mechanism when vehicle collide with pedestrian. This study ensured the safety space between engine and hood after it applies to simple link mechanism and pneumatic cylinder. It can absorb the damage which measure the specific device if vehicle collide with pedestrian. Combination of simple link mechanism and pneumatic cylinder was more superior than the present pedestrian protection device. Simple link mechanism could confirm superior height and survival probability than when only cylinder operated. It also ensured enough space between engine and hood. And if a cylinder is not working because of old cylinder, poor repair or damage of accident vertical cylinder would be difficult to execute because there exists the irregular space between engine and hood. If simple link mechanism operates with only one cylinder it could ensure the regular space because simple link mechanism set up at the middle of hood. So this device could confirm high safety for pedestrian.

  • PDF

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.506-511
    • /
    • 2008
  • Recently, it is widely progressed that the research of the performance improvement of an intelligent vehicle. Among them, its parking problem has attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing an autonomous parking system. We first design a parking path for the slant space and propose a fuzzy logic based parking algorithm. We present its simulation results and show the effectiveness of the proposed method.

Simulator Development for GEO (Geostationary Orbit)-Based Launch Vehicle Flight Trajectory Prediction System (정지궤도 기반 발사체 비행 궤적 추정시스템의 시뮬레이터 개발)

  • Myung, Hwan-Chun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2022
  • The missile early-warning satellite systems have been developed and upgraded by some space-developed nations, under the inevitable trend that the space is more strongly considered as another battle field than before. As the key function of such a satellite-based early warning system, the prediction algorithm of the missile flight trajectory is studied in the paper. In particular, the evolution computation, receiving broad attention in the artificial intelligence area, is applied to the proposed prediction method so that the global optimum-like solution is found avoiding disadvantage of the previous non-linear optimization search tools. Moreover, using the prediction simulator of the launch vehicle flight trajectory which is newly developed in C# and Python, the paper verifies the performance and the feature of the proposed algorithm.

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Launch Vehicle Telemetry MUX Test by using the Spacecraft Simulator

  • Won, Young-Jin;Lee, Jin-Ho;Yun, Seok-Teak;Kim, Jin-Hee;Lee, Sang-Ryool
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.46.3-46.3
    • /
    • 2009
  • The SAR (Synthetic Aperture Radar) satellite has the advantage of implementing the imaging mission even though it is night time, cloudy weather, and all weather conditions, which is different from the satellite with the optical payload. This is the reason why the SAR satellite comes into the spotlight in the observation satellite field. The Korea Aerospace Research Institute (KARI) has been developing the first Korean SAR satellite and is currently integrating and testing the Flight Model. For the launch vehicle service, KARI finalized the selection of the launch vehicle service provider and finished Critical Design Review (CDR) of the interface between the bus and the launch vehicle. KARI and launch vehicle service provider also finished the test of the telemetry interface between the bus and the launch vehicle. The test of the telemetry interface has the purpose of checking the interface of the telemetry which is the SOH(State-of-Health) of the satellite in an early launch stage. For this test, KARI has finished the development of the spacecraft simulator which is composed of the bus simulator to generate the analog telemetry and the launch vehicle simulator to gather the telemetry. In this research, the result of the hardware implementation and the software implementation for the spacecraft simulator were described. Finally the results of the launch vehicle telemetry MUX test which were performed at the launch vehicle provider's design office by using the spacecraft simulator were summarized. It is expected that this simulator will be used in the next test after the manufacture of the launch vehicle.

  • PDF

The Launch of the COMS by Ariane-5 Launch Vechicle (아리안-5 발사체를 이용한 통신해양기상위성 발사)

  • Lee, Ho-Hyung;Kim, Bang-Yeop;Choi, Jung-Su;Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2008
  • The launch of the COMS by using Ariane-5 launch vehicle is introduced. First, the COMS is introduced briefly, and then, the Ariane-5 launch vehicle is introduced including detail description of the improvement of Vulcain-1 engine of Ariane-5G to Vulcain-2 engine of Ariane-5ECA for 20% increase of thrust. Then, the launch process of the COMS is introduced. The COMS will be launched from the Guiana Space Center in Kourou, French Guiana. After the final check at PPF the COMS is transferred to HPF in the same building for fueling, and it is integrated to the launch vehicle adaptor at HPF, too. Then, this assembly is transferred to Final Assembly Building. After the satellites to be launched together are integrated to the launch vehicle on the launch table in the Final Assembly Building, the launch table loaded with the launch vehicle is moved to the launch pad for launch. The events during the launch vehicle flight is also introduced.