• Title/Summary/Keyword: Space Time Coding

Search Result 238, Processing Time 0.026 seconds

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

DNA Coding Method for Time Series Prediction (시계열 예측을 위한 DNA 코딩 방법)

  • 이기열;선상준;이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.280-280
    • /
    • 2000
  • In this paper, we propose a method of constructing equation using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is. we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series.

  • PDF

Layered Turbo codes combined with space time codes for satellite systems (위성 시스템에서의 시공간 부호 기술과 결합된 계층적 터보 부호)

  • Kim, Young-Min;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • A layered coding scheme is one of the adaptive receiving techniques for unidirectional services such as multimedia broadcasting and multicasting services (MBMS), where we cannot utilize feedback information. The layered coding scheme can be used with hierarchical modulations by combining suitable code rates and modulation orders of each. In addition, it has been reported that hybrid and/or integrated satellite systems can effectively achieve transmit diversity gains by appropriate utilization of space time coding combined with turbo codes. This paper proposes a layered turbo coding schemes for hybrid and/or integrated satellite systems. We first introduce the system architecture and operational principle of the proposed scheme, and discuss the applicability.

Improved Blind Cyclic Algorithm for Detection of Orthogonal Space-Time Block Codes

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.136-140
    • /
    • 2006
  • In this paper, we consider the detection of orthogonal space-time block codes (OSTBCs) without channel state information (CSI) at the receiver. Based on the conventional blind cyclic decoder, we propose an enhanced blind cyclic decoder which has higher system performance than the conventional one. Furthermore, the proposed decoder offers low complexity since it does not require the computation of singular value decomposition.

Relationships between Diversity Techniques and Channel Coding Rates for SC-FDMA Systems (SC-FDMA 시스템에서의 다이버시티 기술과 채널부호화율의 관계)

  • Rim, Min-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.1-11
    • /
    • 2009
  • In OFDMA or SC-FDMA systems one can generate time varying channels or frequency selective channels using multiple transmit antennas to achieve diversity without special space-time processing at the receivers. While low channel coding rate needs to be used for distributed-allocation SC-FDMA systems with a phase rolling technique to produce time fluctuation, relatively high channel coding rate can be used when cyclic delay diversity is used to increase frequency selectivity assuming quasi-static channel. On the other hand, for block-hopping SC-FDMA systems there is no significant difference between two diversity techniques in terms of optimal channel coding rates.

Performance Evaluation of Turbo Codes by Soft Detection Metrics of STBC over an IEEE 802.16e Link (IEEE 802.16e 링크에서 시공간 블록 부호의 연판정 검출에 따른 터보 부호의 성능평가)

  • Kim, Young-Min;Kim, Soo-Young;Lim, Kwang-Jae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Multi antenna techniques using space-time codes can achieve diversity gains in a multi-path environment without additional bandwidth requirement. Most of the 4G candidate standards including the IEEE 802.16e adopt multi-input multi-output (MIMO) schemes to achieve either high throughput performance or diversity gains. In these 4G candidate standards, turbo codes using an iterative decoder with soft input soft output are used to overcome serious channel fading. For this reason, the estimated signal values from MIMO detectors should be soft decision detection values. In this paper, we propose efficient methods to estimate soft decision detection values for various space time coding schemes, and provide the simulation results of turbo coded space time coding scheme over an IEEE 802.16e link.

Performance of Tactics Mobile Communication System Based on UWB with Double Binary Turbo Code in Multi-User Interference Environments (다중 사용자 간섭이 존재하는 환경에서 이중이진 터보부호를 이용한 UWB 기반의 전술이동통신시스템 성능)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a tactics mobile communication system based on ultra wide band (UWB) in multi-user interference (MUI) environments. This system adopts a double binary turbo code for forward error correction (FEC). Wireless channel is modeled a modified Saleh and Valenzuela (SV) model. We employ a space time block coding (STBC) scheme for enhancing system performance. System performance is evaluated in terms of bit error probability. From the simulation results, it is confirmed that the tactics mobile communication system based on UWB, which is encoded with the double binary turbo code, can achieve a remarkable coding gain with reasonable encoding and decoding complexity in multi-user interference environments. It is also known that the bit error probability performance of the tactics mobile communication system based on UWB can be substantially improved by increasing the number of iterations in the decoding process for a fixed cod rate. Besides, we can demonstrate that the double binary turbo coding scheme is very effective for increasing the number of simultaneous users for a given bit error probability requirement.

Phase Noise Compensation in OFDM Communication System by STFBC Method (OFDM 통신 시스템에서 STFBC 기법을 이용한 위상잡음 보상)

  • Li Yingshan;Ryu Heung-Gyoon;Jeong YoungHo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1043-1049
    • /
    • 2005
  • In OFDM system suitable for high capacity high speed broadband transmission, ICI caused by phase noise degrades system performance seriously by destroying the orthogonality among subcarriers. In this paper, a new STFBC method combining ICI self cancellation scheme and antenna, time, frequency diversity is studied to reduce ICI effectively. CPE and ICI are analyzed by the phase noise linear approximation method in the proposed STFBC OFDM system. CIR, PICR and BER are discussed to compare the system performance degraded by phase noise of PLL. As results, STFBC method significantly reduces ICI. Furthermore, the SCI that usually happens in the traditional STBC, SFBC diversity coding method can be easily avoided.

Noncoherent Unitary Space-Time Modulated DSSS Systems in Multipath Channels

  • Cheun, Kyung-Whoon;Kim, Jeong-Chang;Kim, You-Han;Choi, Soong-Yoon
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.206-212
    • /
    • 2012
  • In this paper, in order to effectively apply unitary space-time modulation to the direct-sequence spread-spectrum multiple-access (DSSS-MA) networks, we propose a low-rate, noncoherent, unitary, and space-time modulated DSSS system supporting any number of transmit antennas based on Walsh matrices. The proposed scheme simultaneously performs bandwidth spreading and space-time coding and outperforms those using high-rate, conventional unitary space-time constellations. Furthermore, the proposed scheme allows for a simple detector structure based on fast Walsh transforms.

OFDM-Based STBC with Low End-to-End Delay for Full-Duplex Asynchronous Cooperative Systems

  • Jiang, Hua;Xing, Xianglei;Zhao, Kanglian;Du, Sidan
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.710-713
    • /
    • 2013
  • We propose a new space-time block coding (STBC) for asynchronous cooperative systems in full-duplex mode. The orthogonal frequency division multiplexing (OFDM) transmission technique is used to combat the timing errors from the relay nodes. At the relay nodes, only one OFDM time slot is required to delay for a pair-wise symbol swap operation. The decoding complexity is lower for this new STBC than for the traditional quasi-orthogonal STBC. Simulation results show that the proposed scheme achieves excellent performances.