Noncoherent Unitary Space-Time Modulated DSSS Systems in Multipath Channels

  • Received : 2011.01.27
  • Accepted : 2011.08.30
  • Published : 2012.04.30

Abstract

In this paper, in order to effectively apply unitary space-time modulation to the direct-sequence spread-spectrum multiple-access (DSSS-MA) networks, we propose a low-rate, noncoherent, unitary, and space-time modulated DSSS system supporting any number of transmit antennas based on Walsh matrices. The proposed scheme simultaneously performs bandwidth spreading and space-time coding and outperforms those using high-rate, conventional unitary space-time constellations. Furthermore, the proposed scheme allows for a simple detector structure based on fast Walsh transforms.

Keywords

References

  1. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999. https://doi.org/10.1109/18.771146
  2. S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998. https://doi.org/10.1109/49.730453
  3. B. Hochwald, T. L. Marzetta, and C. B. Papadias, "A transmitter diversity scheme for wideband CDMA systems based on space-time spreading," IEEE J. Sel. Areas Commun., vol. 19, no. 1, pp. 48-60, Jan. 2001. https://doi.org/10.1109/49.909608
  4. K. Wang and H. Ge, "New differential transmission scheme with transmit diversity for DS-CDMA systems," in Proc. IEEE VTC 2001 fall, vol. 1, 2001, pp. 232-236.
  5. A. L. F. de Almeida, G. Favier, and J. C. M. Mota, "Multiuser MIMO system using block space-time spreading and tensor modeling," Signal Process., vol. 88, pp. 2388-2402, Oct. 2008. https://doi.org/10.1016/j.sigpro.2008.03.020
  6. A. L. F. de Almeida, G. Favier, and J. C. M. Mota, "Space-time spreading MIMO-CDMA downlink systems using constrained tensor modeling," Signal Process., vol. 88, pp. 2403-2416, Oct. 2008. https://doi.org/10.1016/j.sigpro.2008.03.022
  7. A. L. F. de Almeida, G. Favier, and J. C. M. Mota, "Space-time spreading? multiplexing for MIMO wireless communication systems using the PARATUCK-2 tensor model," Signal Process., vol. 89, pp. 2103-2116, Nov. 2009. https://doi.org/10.1016/j.sigpro.2009.04.028
  8. S. Zhou, X. MA, and K. Pattipati, "A view on full-diversity moduluspreserving rate-one linear space-time block codes," Signal Process., vol. 86, pp. 1968-1975, Aug. 2006. https://doi.org/10.1016/j.sigpro.2005.10.002
  9. J. L. Yu, M. F. Lee, and C. C. Lin, "Multiuser receivers for MC-CDMA MIMO systems with space-time block codes," Signal Process., vol. 89, pp. 99-110, Jan. 2009. https://doi.org/10.1016/j.sigpro.2008.07.010
  10. B. L. Hughes, "Differential space-time modulation," IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567-2578, Nov. 2000. https://doi.org/10.1109/18.887864
  11. B. M. Hochwald and T. L. Marzetta, "Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading," IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 543-564, Mar. 2000. https://doi.org/10.1109/18.825818
  12. B. M. Hochwald, T. L.Marzetta, T. J. Richardson, W. Sweldens, and R. Urbanke, "Systematic design of unitary space-time constellations," IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 1962-1973, Sept. 2000. https://doi.org/10.1109/18.868472
  13. G. Leus, Z. Zhao, G. B. Giannakis, and H. Delic, "Space-time frequencyshift keying," IEEE Trans. Commun., vol. 52, no. 3, pp. 346-349, Mar. 2004. https://doi.org/10.1109/TCOMM.2004.823647
  14. V. Tarokh and I. M. Kim, "Existence and construction of noncoherent unitary space-time codes," IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 3112-3117, Dec. 2002. https://doi.org/10.1109/TIT.2002.805075
  15. J. Kim and K. Cheun, "Unitary space-time constellations based on quasiorthogonal sequences," IEEE Trans. Commun., vol. 58, no. 1, pp. 35-39, Jan. 2010. https://doi.org/10.1109/TCOMM.2010.01.080123
  16. V. Tarokh and H. Jafarkhani, "A differential detection scheme for transmit diversity," IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp. 1169-1174, July 2000. https://doi.org/10.1109/49.857917
  17. 3rd Generation Partnership Project, 3GPP TS 25.211: Physical channels and mapping of transport channels onto physical channels (FDD).
  18. 3rd Generation Partnership Project 2, Physical Layer Standard for CDMA2000 spread spectrum systems. [Online]. Avaliable: http://www.3gpp2.org
  19. R. F. Ormondroyd and J. J. Maxey, "Performance of low-rate orthogonal convolutional codes in DS-CDMA applications," IEEE Trans. Veh. Technol., vol. 46, no. 2, pp. 320-328, May 1997. https://doi.org/10.1109/25.580770
  20. J. Cho, Y. Kim, and K. Cheun, "A novel frequency-hopping spreadspectrum multiple-access network usingM-ary orthgonal Walsh sequence keying," IEEE Trans. Commun., vol. 51, no. 11, pp. 1885-1896, Nov. 2003. https://doi.org/10.1109/TCOMM.2003.818090
  21. K. Cheun and T. Jung, "Performance of asynchronous FHSS-MA networks under Rayleigh fading and tone jamming," IEEE Trans. Commun., vol. 49, no. 3, pp. 405-408, Mar. 2001. https://doi.org/10.1109/26.911446
  22. L.M. A. Jalloul and J.M. Holtzman, "Performance analysis of DS/CDMA with noncoherent M-ary orthogonal modulation in multipath fading channels," IEEE J. Sel. Areas Commun., vol. 12, no. 5, pp. 862-870, June 1994. https://doi.org/10.1109/49.298060
  23. K. Cheun, Spread-Spectrum Communications: Introduction to Basic Concepts with Emphasis on Direct-Sequence Spreading. Pohang, Korea: POSTECH Press, 1995.
  24. M. B. Pursley, "Performance evaluation for phase-coded spread-spectrum multiple-access comunication - Part I: System analysis," IEEE Trans. Commun., vol. COM-25, no. 8, pp. 795-799, Aug. 1977.
  25. K. Cheun, "Performance of direct-sequence spread-spectrum RAKE receivers with random spreading sequences," IEEE Trans. Commun., vol. 45, no. 9, pp. 1130-1143, Sept. 1997. https://doi.org/10.1109/26.623079
  26. C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Society for Industrial & Applied Mathematics, 2000.
  27. B.M. Hochwald andW. Sweldens, "Differential unitary space-time modulation," IEEE Trans. Commun., vol. 48, no. 12, pp. 2041-2052, Dec. 2000. https://doi.org/10.1109/26.891215
  28. D. Agrawl, T. J. Richardson, and R. L. Urbanke, "Multiple-antenna signal constellations for fading channels," IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2618-2626, Sept. 2001. https://doi.org/10.1109/18.945279
  29. I. Bahceci and T. M. Duman, "Trellis-coded unitary space-time modulation," IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2005-2012, Nov. 2004. https://doi.org/10.1109/TWC.2004.837644
  30. I. Bahceci and T. M. Duman, "Trellis coded unitary space-time modulation," in Proc. IEEE GLOBECOM, vol. 2, 2001, pp. 1108-1112.
  31. D. Agrawl, T. J. Richardson, and R. L. Urbanke, "Multiple-antenna signal constellations for fading channels," in Proc. IEEE ISIT, 2000, p. 365.
  32. A. Panagos and K. Kosbar, "A GRASP for unitary space-time codes," in Proc. IEEE GLOBECOM, vol. 6, 2005, pp. 3310-3313.
  33. K. G. Beauchamp, Applications of Walsh and Related Functions. London: Academic Press, 1984.
  34. J. G. Proakis, Digital Communications. 3rd ed., New York: McGraw-Hill, Inc., 1995.