• Title/Summary/Keyword: Space Mineral

Search Result 312, Processing Time 0.023 seconds

Coupled Hydrological-mechanical Behavior Induced by CO2 Injection into the Saline Aquifer of CO2CRC Otway Project (호주 오트웨이 프로젝트 염수층 내 CO2 주입에 따른 수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Shinn, Young Jae;Rutqvist, Jonny;Cheon, Dae-Sung;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.166-180
    • /
    • 2016
  • The present study numerically simulated the CO2 injection into the saline aquifer of CO2CRC Otway pilot project and the resulting hydrological-mechanical coupled process in the storage site by TOUGH-FLAC simulator. A three-dimensional numerical model was generated using the stochastic geological model which was established based on well log and core data. It was estimated that the CO2 injection of 30,000t over a period of 200 days increased the pressure near the injection point by 0.5 MPa at the most. The pressure increased rapidly and tended to approach a certain value at an early stage of the injection. The hydrological and mechanical behavior observed from the CO2 flow, effective stress change and stress-strength ratio revealed that the CO2 injection into the saline aquifer under the given condition would not have significant effects on the mechanical safety of the storage site and the hydrological state around the adjacent fault.

A Technical Review of Hydromechanical Properties of Jointed Rock Mass accompanied by Fluid Injection (유체 주입을 동반한 절리 암반의 수리-역학 특성 평가에 대한 고찰)

  • Kim, Hyung-Mok;Guglielmi, Yves;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.12-29
    • /
    • 2019
  • Permeability and its change due to a fluid injection in jointed rock mass is an important factor to be well identified for a safe and successful implementation of Carbon Capture and Sequestration (CCS), Enhanced Geothermal System (EGS) and Enhanced Oil Recovery (EOR) projects which may accompany injection-induced hydromechanical deformation of the rock mass. In this technical report, we first reviewed important issues in evaluating initial permeability using borehole hydraulic tests and numierical approaches for understanding coupled hydromechanical properties of rock mass. Recent SIMFIP testing device to measure these hydromechanical properties directly through in-situ borehole experiments was also reviewed. The technical significance and usefulness of the device for further applications was discussed as well.

The Chloride Ion Diffusivity of Ready-Mixed Concrete Depending on Specified Compressive Strength (레디믹스트 콘크리트의 설계기준 압축강도별 염소이온 확산특성)

  • Park, Dong-Cheon;Kim, Yong-Ro
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.543-550
    • /
    • 2018
  • The RC buildings which are constructed on the seaside are followed by KBC(2016) to achieve the minimization of durability damage. To control the corrosion of the reinforcing steel bar by salt attack, W/C should be under 0.4 and specified concrete strength is higher than 35MPa in the concrete/building construction standard specification. Even though it has been proved that the concrete mixed with mineral admixture such as blast furnace slag and fly ash etc. have high strength and durability in previous researches, the beneficial informations are not applied to the codes. Ready-mixed concretes which usually include the admixtures in Busan were tested to certify the salt attack durability. In the same specified concrete strength, remarkable salt attack durability was evaluated in comparison to OPC. For economical and reliable durability design, chloride ion diffusivity should be measured before applying to new building construction.

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks (점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰)

  • Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.519-539
    • /
    • 2020
  • We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

Numerical Stability Evaluation of Underground Semi-Spherical Cavity (반구형 지중공동의 수치해석적 안정성 평가)

  • Lee, Taegeon;Ryu, Dong-Woo;Youn, Heejung
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • The existence of underground cavity should be considered in the assessment of georisk such as ground subsidence. Even if the shear strength of the ground around the cavity is known, it is difficult to accurately analyze the safety around the cavity due to the uncertainties related to geometric conditions such as the cavity size. In this paper, stability chart representing dimensionless stability constants was proposed based on the ground strength and geometric conditions. Numerical analysis had been carried out accounting for the stability constants such as the ground strength, the adhesion and friction angles, and the size and depth of the underground cavity. The proposed charts can help estimating the stability of ground with underground circular cavity.

Analysis of International Standardization Trends of Smart Mining Technology: Focusing on GMG Guidelines (스마트 마이닝 기술 국제 표준화 동향 분석: GMG 가이드라인을 중심으로)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.173-193
    • /
    • 2022
  • In this study, international standardization trend of smart mining technology was analyzed focusing on the guidelines developed by GMG (Global Mining Guidelines Group). GMG is a non-profit organization that unites the global mining community. It was established to promote mining safety, innovation and sustainability. Currently, GMG's working group consists of artificial intelligence, asset management, autonomous mining, cybersecurity, data access and usage/interoperability, the electric mine, mineral processing, underground mining, and sustainability. Guideline development projects related to smart mining technology are being conducted in artificial intelligence, autonomous mining, cybersecurity, data access and usage/interoperability, and underground mining. As of April 2022, eight types of smart mining-related guidelines have been published through pre-launch, launch, guideline definition, contents generation, technical editing/layout/final review, and voting process. It is judged that the GMG guidelines can be an important reference for the development of domestic smart mining technology standards.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Effects of gihyeolsotong-hwan on monosodium iodoacetate-induced osteoarthritis in rats (기혈소통환(氣血疏通丸)이 Monosodium iodoacetate로 골관절염(骨關節炎)을 유도(誘導)한 랫드에 미치는 영향(影響))

  • Xu, Wen-Qiang;Kim, Soon-Keun;Choi, Hak-Joo;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.33 no.3
    • /
    • pp.45-53
    • /
    • 2018
  • Objectives : In cases of osteoarthritis, the hypofunction of the cartilage and joint leads to a limited range of joint motion, swelling, and pain, which is generally treated using pharmaceutical drugs (e.g., anti-inflammatory agents, cartilage protectants, and nonsteroidal anti-inflammatory drugs) or replacement arthroplasty. However, long-term drug treatment is associated with adverse effects on the gastrointestinal systems. The present study aimed to evaluate the ability of Giheolsotong-hwan to treat of osteoarthritis symptoms in the MIA-induced rat model based on histological analysis, and factors that are associated with inflammation and bone mineral metabolism. Methods : Giheolsotong-hwan was administered orally at doses of 200 mg/kg/day or 400 mg/kg/day for 2 weeks before direct injection of monosodium iodoacetate ($3mg/50{\mu}{\ell}$ of 0.9% saline) into the intra-articular space of the rats' right knee. The rats subsequently received the same doses of oral Giheolsotong-hwan for another 4 weeks. We evaluated the treatment effects based on serum biomarkers and histopathological analysis of the knee joints. Results : Compared to those in control rats, the Giheolsotong-hwan treatments significantly decreased the serum concentration of inflammation factors (i.e., $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, $PGE_2$, and $LTB_4$), and bone degrade factors (i.e., MMP-9, CTX-II, and COMP). In addition, the Giheolsotong-hwan treatments significantly increased the concentration of glycosaminoglycans of bone defence factors, but no chage the TIMP-1. Furthermore, the Giheolsotong-hwan treatments effectively preserved the knee cartilage and proteoglycan. Conclusion : The results indicate that Giheolsotong-hwan treated osteoarthritis symptoms. Thus, Giheolsotong-hwan may be a novel oriental therapeutic option for the management of osteoarthritis.

Modeling Solar Irradiance in Tajikistan with XGBoost Algorithm (XGBoost를 이용한 타지키스탄 일사량 예측 모델)

  • Jeongdu Noh;Taeyoo Na;Seong-Seung Kang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.403-411
    • /
    • 2023
  • The possibility of utilizing radiant solar energy as a renewable energy resource in Tajikistan was investigated by assessing solar irradiance using XGBoost algorithm. Through training, validation, and testing, the seasonality of solar irradiance was clear in both actual and predicted values. Calculation of hourly values of solar irradiance on 1 July 2016, 2017, 2018, and 2019 indicated maximum actual and predicted values of 1,005 and 1,009 W/m2, 939 and 997 W/m2, 1,022 and 1,012 W/m2, 1,055 and 1,019 W/m2, respectively, with actual and predicted values being within 0.4~5.8%. XGBoost is thus a useful tool in predicting solar irradiance in Tajikistan and evaluating the possibility of utilizing radiant solar energy.

Investigation on Water Leakage-Induced Tunnel Structure and Ground Responses Using Coupled Hydro-Mechanical Analysis (수리역학 연계해석을 이용한 누수로 인한 터널 구조물 및 지반 거동의 분석)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.265-280
    • /
    • 2023
  • Water leakage in tunnels is a defect that can affect tunnel stability and the ground movement by changing the stress and pore water pressure of the surrounding ground. Long-term or large-scale water leaks may lead to damage of tunnel structure and the surrounding environment, such as tunnel lining instability and ground surface settlement. The present study numerically investigated the effects of water leakage on the structural stability of a tunnel and the ground behavior. The tunnel was assumed to be under undrained conditions for preventing the inflow of the surrounding water and leaks occurred in the concrete lining after completion of the tunnel construction. A coupled hydro-mechanical analysis using a TOUGH-FLAC simulator developed in Python was conducted for assessing the leakage induced-behavior of the tunnel structure and ground under different conditions of the amount and location of water leak. Additionally, the effect of hydro-mechanical coupling terms on the results of coupled response was investigated and discussed.