• Title/Summary/Keyword: Space Launcher

Search Result 98, Processing Time 0.027 seconds

Stakeholder's Expectations in the National Space Exploration Enterprise (우리나라 우주개발사업에서 이해당사자(Stakeholder)의 기대조건)

  • Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1077-1085
    • /
    • 2011
  • Various stakeholder's expectations and constraints are to be efficiently resolved into a program consensus prior to the beginning of its substantial design processes. This study focuses on the analysis of the stakeholder's expectations in determining the design requirements at the initial stage of space exploration programs including Naro launcher and currently on-going KSLV-II program. Naro program seems to unilaterally account for the government expectations of accelerating program phase speed without making any efforts to converge various expectations from related sectors. The planning of Naro launcher is also found lack of the concept of operations (ConOps), which is of critical importance by envisaging the operational applications of end products. Similarities are found in KSLV-II program regarding the lack of implementation for stakeholder's expectations. Moreover, the government plan for KSLV-II disclosed without considering all expectations and other comments. The increase in design conflicts and program uncertainties would be unavoidable, if the government plan for KSLV-II would be insisted. It is required to modify the government plan and to establish the ConOps with the convergence of stakeholder's expectations at this early stage of the program.

A Process of the Risk Management for a Space Launch Vehicle R&D Project (우주발사체 개발사업의 위험관리 프로세스)

  • Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-27
    • /
    • 2016
  • Many countries concentrated on the space developments to enhance the national security and the people's quality of life. A space launch vehicle for accessing the space is a typical large complex system that is composed of the high-technology like high-performance, high-reliability, superhigh-pressure, etc. The project developing large complex system like space launcher is mostly conducted in the uncertain environment. To achieve a goal of the project, its success probability should be enhanced consistently by reducing its uncertainty during the life cycle: it's possible to reduce the project's uncertainty by performing the risk management (RM) that is a method for identifying and tracing potential risk factors in order to eliminate the risks of the project. In this paper, we introduce the risk management (RM) process applied for a Space Launch Vehicle R&D Project.

Design of a Structural Model for Korean Lunar Explorer (한국형 달탐사선 구조모델 설계)

  • Son, Taek-Joon;Na, Kyung-Su;Kim, Jong-Woo;Lim, Jae Hyuk;Kim, Kyung-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.366-372
    • /
    • 2013
  • Korean lunar explorer will be launched by korean launcher KSLV-2 in the 2020s in accordance with national space development strategy. Korean lunar explorer is composed of two unmanned orbiter and lander and should be developed as small size and light weight within 550kg of launch mass due to launcher's loading capability. A structure of lunar explorer is required to have sufficient stiffness and strength under launch and operational environment as well as to accommodate mission equipment. This paper describes the result of a preliminary study on structural model design for korean lunar explorer.

Status of a launching state in international law (발사국의 국제법상 지위)

  • Lee, Joon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.3-11
    • /
    • 2009
  • On August 25th, Korea launched KSLV-1(Naro), the first Korean launch vehicle with the payload of a small satellite. The launch itself was successful in that the first and second stage of the launch vehicle functioned properly but unfortunately the satellite was unable to be put into earth orbit due to the failure of a nose faring detachment. As the history of human space activities shows, it is recognized as a difficult task to be a launching state requiring efforts to obtain enough technical ability. But along with the technical ability, there has to be an understanding on international legal systems on space launch vehicle. It is because the launch may cause cross-border losses and because the launcher is regarded as a strategic technology resulting in international control. This paper aims to study the international status of launching state and to consider legal regimes necessary for launcher development.

  • PDF

Critical Design Result of Liquid Oxygen Filling System for Korea Space Launch Vehicle-II Launch Complex (한국형발사체 발사대시스템 산화제공급설비 상세설계)

  • Seo, Mansu;Ko, Min-Ho;Sun, Jeong-Woon;Suh, Hyun-Min;Lee, Jae Jun;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, the liquid oxygen filling system (LOXFS) of the launch complex system of Korea Space Launch Vehicle-II (KSLV-II) is introduced based on critical design result by KARI in 2015 to 2016. The function and specification of the main systems of the liquid oxygen filling system, such as the storage tank, the drainage tank, the supply pumping system, the curved heat exchanger with liquid nitrogen, end valve block system, and umbilical connection, are presented.

Shell and Tube Heat Exchanger Performance Estimation by Changing Shell-side Fluid Characteristics (쉘-튜브 열교환기에서의 쉘쪽 유체의 특성에 따른 열교환기 성능 변화 예측 사례)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.27-37
    • /
    • 2019
  • The shell and tube heat exchangers installed in the propulsion system test complex (PSTC) at the Naro Space Center heats cryogenic helium to 500 K with a heat transfer oil. As the experimental helium outlet temperature was lower than expected (less than 100 K), the boundary layer effect of the heat transfer oil is predicted to be the cause of the performance deterioration. A computational fluid dynamics (CFD) analysis was performed to verify where the boundary layer effect exists; however, the boundary layer effect has no significant impact on the performance of the heat exchanger. An alternative method to improve the performance of the heat exchanger by changing the heat transfer oil has been discussed in this paper. The low viscosity and high thermal conductivity at high temperature (~500 K) of heat transfer oil at the shell-side are required to improve the thermal performance of the heat exchanger. The experimental performance of the heat exchanger, used to exchange heat between the cryogenic helium and hot heat transfer oil at the PSTC are summarized in this paper.

Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing

  • Waimer, Steffen;Manzato, Simone;Peeters, Bart;Wagner, Mark;Guillaume, Patrick
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.205-223
    • /
    • 2018
  • During launch a spacecraft is subjected to a variety of dynamical loads transmitted through the launcher to spacecraft interface or air-born transmission excitations in the acoustic pressure field inside the fairing. As a result, spacecraft are tested on ground to ensure and demonstrate the global integrity of the structure against these loads, to screen the flight hardware for quality of workmanship and to validate mathematical models. This paper addresses the numerical modelling and simulation of the low frequency sine and random vibration tests performed on electrodynamic shaker facilities to comprise the mechanical-borne transmission loads through the launcher to spacecraft interface. Consequently, the paper reviews techniques and methodologies to derive a reliable and representative coupled virtual vibration testing simulation environment based on experimental data. These technologies are explored with the main objectives to ensure a stable, reliable and accurate control while testing. As a result, the use of the derived simulation models in combination with the added value of improved control and signal processing algorithms can lead to a safer and smoother vibration test control of the entire environmental test campaign.

Operating Process Design and Verification on the Oxidizer Filling Ground Facility for Liquid Rocket (액체로켓 산화제 지상공급시스템의 운용 프로세스 설계 및 검증)

  • Kim, Ji-Hoon;Park, Soon-Young;Park, Pyun-Goo;Yoo, Byung-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.781-783
    • /
    • 2011
  • The oxidizer filling system, ground facility of the launch complex, should accept difficult requirements from the launcher sufficiently. The launcher do not have unnecessary insulators for mass reduction and manages liquid oxygen mass fastidiously to satisfy the mission requirement. So, the ground facility should be able to accept its requirements, then we should make the operating process being adjusted. In this paper, the operating process design and verification results on the oxidizer filling ground facility for liquid rocket is demonstrated.

  • PDF

Application of trajectory data mining to improve the estimation accuracy of launcher trajectory by telemetry ground system (원격자료수신장비의 발사체궤적 추정정확도 향상을 위한 궤적데이터마이닝의 적용)

  • Lee, Sunghee;Kim, Doo-gyung;Kim, Keun-hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.1-11
    • /
    • 2015
  • This paper is focused on how the trajectory of launch vehicle could be optimally estimated by the quadratic regression of trajectory data mining for the operation of telemetry ground system in NARO space center during real-time. To receive the telemetry data, the telemetry ground system has to track the space launch vehicle without tracking loss, and it is possible by the well-designed algorithm to estimate a flight position in real-time. For this reason, the quadratic regression model instead of interpolation was considered to estimate the exact position data of launch vehicle and the improvement of antenna performance. For analysis, the real trajectory data which had been logged during NARO 1st launch mission were used, the estimation result of launcher current position was analyzed by the mathematical modeling. In conclusion, the algorithm using quadratic regression based on trajectory data mining showed the better performance than previous interpolation algorithm to estimate the next flight position and the antenna driving performance.

Performance Analysis of a Precise Explicit Guidance Algorithm for Space Launch Vehicles (우주발사체의 정밀한 외연적 유도 알고리듬 성능 분석)

  • Song, Eun-Jung;Cho, Sang-Bum;Park, Chang-Su;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.853-861
    • /
    • 2012
  • This paper considers one of the explicit guidance algorithms, which has been proposed by Jaggers, to determine the closed-loop guidance algorithm for upper stages of a 3-staged space launch vehicle. Its commanded thrust vector is closer to the optimal solution when compared with that obtained by using the well-known Powered Explicit Guidance (PEG), which has been developed through the Space Shuttle program. Its performance is evaluated here by applying for guidance of the launcher during the second and third stages. Furthermore, to generate more precise guidance commands, it is attempted not to use the approximate formulas for the derivation of the original guidance law, and it is shown that performance is improved in comparison with the original.