• Title/Summary/Keyword: Space Images

Search Result 2,338, Processing Time 0.028 seconds

A Study on the Performance of Human Hand Region Detection in Images According to Color Spaces (컬러공간에 따른 영상내 사람 손 영역의 검출 성능연구)

  • Kim, Jun-Yup;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.186-188
    • /
    • 2005
  • Hand region detection in images is an important process in many computer vision applications. It is a process that usually starts at a pixel-level, and that involves a pre-process of color space transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes for hands and non-skin classes for other parts, to increase similarity among different skin tones, and to bring a robust performance under varying illumination conditions, without any sound reasonings. In this work, we examine if the color space transformation does bring those benefits to the problem of hand region detection on a dataset of images with different hand postures, backgrounds, people, and illuminations. Results indicate that best of the color space is the normalized RGB.

  • PDF

DYNAMICAL SUBSTRUCTURE OF GALACTIC GLOBULAR CLUSTERS

  • Rhee Jongwhan;Sohn Young-Jong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.321-324
    • /
    • 2004
  • We used BV CCD images to study the dynamical substructures of three globular clusters - M5, NGC6934, NGC7006 - analyzing the radial variations of ellipticity and position angle from the point spread function stellar photometry and the ellipse surface photometry. Several populations were classified by the brightness on color-magnitude diagrams of each globular cluster. Ellipse analyses to the images, removed stars of each population from the original images of the clusters, show radial variations in ellipticity and position angle, with the amount of $0.01\~0.25$ in ellipticity and $+90\~-90$ degrees in position angle up to roughly three times of half light radius $(r_h)$. It is also apparent that there are no significant discrepancies in the dynamical substructures beyond $r_h$ among the different populations. However, dynamical substructures on the central region (i.e., inner than $\~r_h$) reflect the contributions of populations of bright red giant stars and horizontal branch stars.

  • PDF

Text Extraction in HIS Color Space by Weighting Scheme

  • Le, Thi Khue Van;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • A robust and efficient text extraction is very important for an accuracy of Optical Character Recognition (OCR) systems. Natural scene images with degradations such as uneven illumination, perspective distortion, complex background and multi color text give many challenges to computer vision task, especially in text extraction. In this paper, we propose a method for extraction of the text in signboard images based on a combination of mean shift algorithm and weighting scheme of hue and saturation in HSI color space for clustering algorithm. The number of clusters is determined automatically by mean shift-based density estimation, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. Weighting scheme of hue and saturation is used for formulation a new distance measure in cylindrical coordinate for text extraction. The obtained experimental results through various natural scene images are presented to demonstrate the effectiveness of our approach.

  • PDF

A collision-free path planning using linear parametric curve based on geometry mapping of obstacles (장애물의 기하투영에 의한 일차매개곡선을 이용한 충돌회피 경로계획)

  • Nam-Gung, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.1992-2007
    • /
    • 1997
  • A new algorithm for planning a collision-free path is developed based on linear prametric curve. In this paper robot is assumed to a point, and two linear parametric curve is used to construct a path connecting start and goal point, in which single intermediate connection point between start and goal point is considered. The intermediate connection point is set in polar coordinate(${\theta}{\delta}$) , and the interference between path and obstacle is mapped into CPS(connection point space), which is defined a CWS GM(circular work space geometry mapping). GM of all obstacles in workspace creates overlapping images of obstacle in CPS(Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The empty area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidian Space. A GM based on connection point in elliptic coordinate(${\theta}{\delta}$) is also developed in that the total length of path is depend only on the variable .delta.. Hence in EWS GM(elliptic work space geometry mapping), increasing .delta. and finding the value of .delta. for collision-free path, the shortest path can be searched without carring out whole GM. The GM of obstacles expersses all possible collision-free path as empty spaces in CPS. If there is no empty space available in CPS, it indicates that path planning is not possible with given number of connection points, i.e. path planning is failed, and it is necessary to increase the number of connection point. A general case collision-free path planning is possible by appling GM to configuration space obstacles. Simulation of GM of obstacles in Euclidian space is carried out to measure performance of algorithm and the resulting obstacle images are reported.

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

Single-Image Dehazing based on Scene Brightness for Perspective Preservation

  • Young-Su Chung;Nam-Ho Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.70-79
    • /
    • 2024
  • Bad weather conditions such as haze lead to a significant lack of visibility in images, which can affect the functioning and reliability of image processing systems. Accordingly, various single-image dehazing (SID) methods have recently been proposed. Existing SID methods have introduced effective visibility improvement algorithms, but they do not reflect the image's perspective, and thus have limitations that distort the sky area and nearby objects. This study proposes a new SID method that reflects the sense of space by defining the correlation between image brightness and haze. The proposed method defines the haze intensity by calculating the airlight brightness deviation and sets the weight factor of the depth map by classifying images based on the defined haze intensity into images with a large sense of space, images with high intensity, and general images. Consequently, it emphasizes the contrast of nearby images where haze is present and naturally smooths the sky region to preserve the image's perspective.

A NEW DESCRIPTION OF SPHERICAL IMAGES ASSOCIATED WITH MINIMAL CURVES IN THE COMPLEX SPACE ℂ4

  • Yilmaz, Suha;Unluturk, Yasin
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.121-134
    • /
    • 2022
  • In this study, we obtain the spherical images of minimal curves in the complex space in ℂ4 which are obtained by translating Cartan frame vector fields to the centre of hypersphere, and present their properties such as becoming isotropic cubic, pseudo helix, and spherical involutes. Also, we examine minimal curves which are characterized by a system of differential equations.

Efficient Color Image Enhancement Technique using Saturation Components of Color Images (컬러 영상의 Saturation 성분을 이용한 효율적인 화질 개선 기법)

  • Kim, Jin Ho;Gil, Min Kyun;Lee, Chang Woo
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.770-773
    • /
    • 2015
  • The contrast of the intensity components of color images usually needs to be improved in order to enhance the visual quality of color images. However, pure color regions can be saturated due to the excessive enhancement of that color. In this paper, a new method for enhancing the visual quality of color images using saturation components in the HSI color space is proposed, and the same enhancement technique in the YCbCr color space is proposed. Computer simulations show that the proposed method provides improved visual quality compared to the conventional methods.

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.