• Title/Summary/Keyword: Soybean mosaic virus (SMV)

Search Result 43, Processing Time 0.032 seconds

Occurrence of Three Major Soybean Viruses, Soybean mosaic virus, Soybean yellow mottle mosaic virus and Soybean yellow common mosaic virus Revealed by a Nationwide Survey of Subsistence Farming Soybean Fields (영세농가 콩 재배지의 Soybean mosaic virus, Soybean yellow mottle mosaic virus 및 Soybean yellow common mosaic virus 병 발생 조사)

  • Cho, Seunghee;Kim, Jungkyu;Li, Meijia;Seo, Eunyoung;Lim, Seungmo;Hong, Seok Myeong;Moon, Jae Sun;Hammond, John;Lim, Hyoun-Sub
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.319-325
    • /
    • 2013
  • Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) were recently isolated in Korea, and it has not been reported how two viruses were dispersed in Korea. In 2012, we performed nationwide survey in subsistence soybean farming. Suspicious virus-infected infected leave were collected from the field and a total of 682 soybean tissue samples were assayed by RT-PCR using triplex primers detecting SYMMV, SYCMV, and Soybean mosaic virus (SMV). On hundred two samples showed SMV positive, and SYMMV and SYCMV were detected in 116 and 17 tissue samples, respectively. No sample showed double infection of SYMMV and SYCMV, but there were double infection tissues indicating two viruses positive of SMV plus SYMMV (5 tissue samples) and SMV plus SYCMV (1 tissue sample). Through this first subsistence soybean farming field survey, we assumed soybean viruses were originated from home seed production managed by farmer. Thus, in order to prevent possible seed transmission and further damage caused by virus transmission, virus-free commercial soybean seeds are recommended to be planted.

Cowpea mosaic virus from Vegetable Soybeans in Korea

  • Cho, Eui-Kyoo;Lee, Sin-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.166-170
    • /
    • 2003
  • Ninety samples showing mosaic symptoms on soybean (Glycine max) cv. Sukryangputkong were collected from the Cheongsongkun area, Kyungbuk province in Korea. Initially, DAS-ELISA was conducted far detection of Soybean mosaic virus (SMV). Negative samples were chosen at random and mechanically inoculated on soybean cv. Buffalo, which reported not to produce mosaic symptoms when mechanically inoculated with SMV. An isolate of SMV, designated as B-1, from Buffalo showing mosaic and mottle symptoms was used for identification and biological characterization of the causal vim. The purified B-1 isolate had spherical particles of approximately 24nm. It positively reacted with the antiserum against Cowpea mosaic virus (CPMV) but not with Cucumber mosaic virus (CMV) and SMV antisera. CPMV was newly isolated from soybean and had been characterized by host range and by serological and electron microscopic methods. Results of this study suggest that CPMV is the possible cause of mosaic disease in vegetable soybean and that based on sympto-matology, a difference between the typical mosaic and rugose symptoms caused by SMV and CPMV was observed. This is first report of CPMV from soybean in Korea.

Identification of Soybean Mosaic Virus Strains and a Consideration on Genetics of Soybean for Resistance to SMV Strains (콩 모자이크 바이러스의 계통분류와 콩 품종의 저항성 유전에 관한 고찰)

  • 조의규
    • Plant Disease and Agriculture
    • /
    • v.1 no.2
    • /
    • pp.22-25
    • /
    • 1995
  • The soybean necrotic disease has been shown to be caused by a virulent strain or strains of soybean mosaic virus (SMV) in soybean cultivar Kwnaggyo. However, the disease was found in soybean cultivar Hwanggeum which was released as a leading and mosaic resistant soybean cultivar in Korea. The strain SMV-G5H appeared to an isolate showing similar characteristics with the strain SMV-G7, although there were some variations in reactions of soybean differentials used.

  • PDF

Evaluation in Korean Soybean Cultivars of Resistance to Soybean Mosaic Virus

  • Kim, Yul-Ho;Kim, Ok-Sun;Moon, Jung-Kyeong;Roh, Jae-Hwan;Im, Dae-Joon;Hur, Il-Bong;Lee, Sang-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.17-21
    • /
    • 2001
  • Soybean mosaic virus (SMV) resistance of Korean recommended soybeans was evaluated naturally and by mechanical inoculation in Suwon. Based on the differential reaction of forty-four soybean genotypes tested to nine different SMV strains, soybeans were classified into twenty-four groups. Myeongjunamulkong and Ilpumgeom-jeongkong showed a high degree of resistance to nine SMV strains, having no symptom. The other cultivars produced various reactions according to inoculation of each SMV strain: symptomless, mosaic or systemic necrosis. Only five cultivars such as Kwangankong, Eunhakong, Tawonkong, Namhaekong, Sobaegnamulkong were totally susceptible to every strain. There was variation in disease incidence. Soybeans, having the highest levels of resistance to G5H and G7H in the greenhouse, showed the lowest levels of SMV incidence in the field of Suwon. Myeong-junamulkong, Ilpumgeomjeongkong, Soyangkong, Pungsannamulkong, Sodamkong, Jangmikong, Geomjeong-kong2, Pureunkong, Sinpaldalkong2, Duyoukong, and Geumgangkong were fairly resistant to SMV. And SMV incidence of Taekwangkong, Saealkong and Baegunkong was over 45% with symptom of bud necrosis. And soybeans, highly resistant to SMV in the field and the greenhouse, were mainly derived from Jangyeobkong and Hwang-keumkong resistant to G1-G7.

  • PDF

Infectious in vivo Transcripts from a Full-length Clone of Soybean mosaic virus Strain G5H

  • Seo, Jang-Kyun;Lee, Hyeok-Geun;Choi, Hong-Soo;Lee, Su-Heon;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • An infectious full-length clone of Soybean mosaic virus (SMV) strain G5H was constructed under the control of the cauliflower mosaic virus 35S promoter. The cloned SMV G5H established infections upon simple rub-inoculation of soybean leaves with intact plasmid DNA. We demonstrated that this SMV G5H infectious DNA clone caused typical characteristic symptoms and virulence of SMV strain G5H in twelve tested soybean cultivars. Soybean cultivars Lee74, Somyungkong and Sowonkong developed systemic mosaic symptom while Kwanggyo, Taekwangkong, Hwangkeumkong and Geumjeongkong-l showed systemic necrosis. In contrast, Geumjeongkong-2, Jinpumkong-2, L29, V94-5152 and Ogden showed resistant response against SMV-G5H infection. We also determined full-length sequence of cloned SMV-G5H. The phyogenetic analyses reveal that SMV-G5H is most closely related to SMV-G5, and support that SMV-G5H might be derived from SMV-G5 by recombination rather than mutation.

Effects of Soybena Mosaic Virus Infection on Nodule Formation (대두모자이크 바이러스 감염이 대두유근형성에 미치는 영향)

  • 이정호
    • Journal of Plant Biology
    • /
    • v.16 no.3_4
    • /
    • pp.35-39
    • /
    • 1973
  • This investigation was conducted to study the effect of soybean mosaic virus (SMV) on various parameters of nodule formation at different stage of soybean plants. Differences in nodule formation were marked between soybean varieties tested, but nodules were small within soybean varieties infected with SMV. SMV-infection on soybeans were greatly reduced the number, size and weight of nodules, and the earlier the infection of SMV, the greater the reduction of nodules. Maximum reduction(83%) of nodules observed when "Kumkang-Daerip" soybeans were inoculated 2 weeks after seeding, but none occurred 8 weeks or later. Prominent decreases in number of nodules often resulted in an increase in nodu'e sizes in SMV-infected soybean plants.an plants.

  • PDF

Severity of Cowpea mosaic virus and Putkong Disease Monitoring and Purification of Cowpea mosaic virus (석량풋콩재배지에서의 동부모자이크바이러스병의 발생도 및 풋콩병해모니터링과 동부모자이크 바이러스의 순화)

  • Cho, Eui-Kyoo
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.30-33
    • /
    • 2007
  • One hundred and eighty-six leaves of soybean cv. Seokryangputkong that showed mild mosaic symptoms were collected randomly and ELISA tests were conducted with those leaf samples to screen the presence of Cowpea mosaic virus (CPMV). Ninety-three out of 186 samples reacted positively to CPMV, but those samples did negatively to Soybean mosaic virus (SMV). At least, 55 leaf samples revealed higher values than that of positive control. The results strongly confirmed that CPMV occurred severely in soybean cv. Seokryangputkong. However, a question is raised on the primary reservoir and vector for transmission of this virus. Since the farmer changes seeds every year, seed transmission is excluded. The virus was also purified, the analysis of coat protein conformed the virus of cowpea mosaic virus and UV absorption pattern confirmed that the causal virus of mosaic disease in soybean putkong was cowpea mosaic virus.

Immunochemical Detection of Soybean Mosaic Virus Infections in the Seeds of Soybean Cultivars in Korea (면역이중확산법에 의한 콩 종자의 모자이크 바이러스(SMV) 감염상 조사)

  • La Yong-Joon;Bak Won-Chull;Oh Jeung-Haing
    • Korean journal of applied entomology
    • /
    • v.22 no.1 s.54
    • /
    • pp.26-30
    • /
    • 1983
  • Soybean mosaic virus (SMV) infection in seeds wits investigated by an immunochemical method Seven soybean cultivars or lines Bughae No.1, KAS 662-7, Chungbugbaeg, Gwanggyo Clark, Bongeui, and Gangrim were tested using hypocotyls of germinated seeds and presence of SMV was detected in six soybean cultivars but Gangrim. The level of SMV infection in the assayed cultivars varied from 2.1 to $12.5\%$. It seemed that seed coat mottling had no correlation with seeds. SMV infection of the seeds since virus has not always been detected from the mot tled seeds SMV has not been detected in the seeds of variety Gwanggyo which showed necrotic symptoms.

  • PDF

Complete Genome Sequencing and Infectious cDNA Clone Construction of Soybean Mosaic Virus Isolated from Shanxi

  • Wang, Defu;Cui, Liyan;Zhang, Li;Ma, Zhennan;Niu, Yanbing
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.162-172
    • /
    • 2021
  • Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the cross-family infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.

Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification (Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단)

  • Lee, Yeong-Hoon;Bae, Dae-Hyeon;Kim, Bong-Sub;Yoon, Young-Nam;Bae, Soon-Do;Kim, Hyun-Joo;Mainali, Bishwo P.;Park, In-Hee;Lee, Su-Heon;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus (SMV) is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at $58^{\circ}C$ for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.