• 제목/요약/키워드: Sox

검색결과 534건 처리시간 0.025초

구기자생과를 이용한 구기자청 제조시 당첨가량에 따른 이화학적 특성 (Physicochemical Properties of Added Sugar Ratio on Gugija-Sugar Leaching by Using Gugija (Lycii fructus) Raw Fruit)

  • 이가순;김관후;김현호;이희철;백승우;이석수
    • 한국식품영양과학회지
    • /
    • 제37권6호
    • /
    • pp.744-751
    • /
    • 2008
  • 생구기자를 수확 후 건조하지 않고 바로 가공용으로 이용하기 위하여 데치기 처리 유무에 따라 저온($5^{\circ}C$)에서 5개월간 당침 숙성하여 구기자청을 만든 후, 첨가당량에 따른 구기자청 제조 시 물리화학적 특성을 조사하였다. 데치기 처리를 하지 않은 구기자청에서 구기자에 대하여 첨가당량이 80%일 때, 77.5%의 회수율로 가장 높았다. 색도에서는 당첨 가량이 많을수록 L값(밝기)이 증가하였으며 pH는 첨가당량에 따라 큰 차이가 없었으나 총산도는 첨가당량이 많을수록 감소하였다. 생구기자 장명의 주된 유기산은 tartaric acid, citric acid, malic acid 및 succinic acid로 각각 0.63, 0.57, 0.54 및 0.3%를 함유하고 있었으며, 구기자청 제조 시 당첨가량이 증가할수록 citric acid와 succinic acid는 감소하는 경향이었고 tartaric acid와 malic acid는 증가하는 경향으로 특히 malic acid가 눈에 띄게 증가하여 UPRGSL-4(당 80% 첨가 구기자청)에서 가장 높았다. 폴리페놀성 물질과 베타인 함량은 데치기 처리를 하지 않은 구기자청에서는 당첨가량에 따라 비례적으로 낮은 함량을 보였으나 사용된 생구기자량과 비교해보면 거의 같은 수준으로 함유하고 있었으며, 데치기 처리를 행한 구기자청은 당첨가량이 증가함에 따라 베타인 함량이 급격히 감소하여 80%와 100% 당첨가 청액에서는 정량되지 않았다. 생구기자의 유리아미노산은 총 15종이 검출되었으며 가장 많이 함유되어 있는 아미노산은 serine으로 218.1 mg/100 g을 함유하고 있었으며 총유리아미노산 함량이 601.6 mg/100 g이었다. 데치기 처리를 한 구기자청(PRGSL-4)은 총 6종의 아미노산이 검출되지 않아 총량이 383.3 mg/100 g으로 약 반량이 감소되었고, 데치기 처리를 하지 않은 구기자청(UPRGSL-4)은 17종 모두 검량되었고 생구기자보다 약간 높은 함량을 보여 총유리아미노산 함량이 705.7 mg/100 g이었다.

Stem Cell Biology, 최근의 진보 (Recent Advancement in the Stem Cell Biology)

  • 한창열
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

미성숙 매복지치의 치낭, 치수, 치근유두 조직에서 다능성 줄기세포의 분리와 특성화에 대한 연구 (Isolation and characterization of human dental tissue-derived stem cells in the impacted wisdom teeth: comparison of dental follicle, dental pulp, and root apical papilla-derived cells)

  • 송정호;박봉욱;변준호;강은주;노규진;신상훈;김욱규;김종렬
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권3호
    • /
    • pp.186-196
    • /
    • 2010
  • Introduction: The first aim of this study was to isolate the dental tissue-derived stem cells from the dental follicle (DF), dental pulp (DP), and root apical papilla (RAP) of the extracted wisdom teeth. Second was to evaluate their characterization with the expressions of transcription factors and cell surface markers. Finally, their ability of the in vitro multi-lineage differentiations into osteogenic and adipogenic cells were compared, respectively. Materials and Methods: Dental tissues, including dental follicle, dental pulp, and root apical papilla, were separated in the extracted wisdom teeth. These three dental tissues were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with supplements, respectively. After passage 3, the homogeneous shaped dental tissue-derived cells were analyzed the expression of transcription factors (Oct-4, Nanog and Sox-2) and cell surface markers (CD44, CD90 and CD105) with reverse transcription polymerase chain reaction (RT-PCR) and fluorescence-activated cell sorting (FACS) analysis. In order to evaluate in vitro multi-lineage differentiations, the culture media were changed to the osteogenic and adipogenic induction mediums when the dental tissue-derived cells reached to passage 3. The characteristics of these three dental tissue-derived cells were compared with immunohistochemistry. Results: During primary culture, heterogenous and colony formatted dental tissue-derived cells were observed in the culture plates. After passage 2 or 3, homogenous spindle-like cells were observed in all culture plates. Transcription factors and mesenchymal stem cell markers were positively observed in all three types of dental tissue-derived cells. However, the quantity of expressed transcription factors was most large in RAP-derived cells. In all three types of dental tissue-derived cells, osteogenic and adipogenic differentiations were observed after treatment of specific induction media. In vitro adipogenic differentiation was similar among these three types of cells. In vitro osteogenic differentiation was most strongly and frequently observed in the RAP-derived cells, whereas rarely osteogenic differentiation was observed in the DP-derived cells. Conclusion: These findings suggest that three types of human dental tissue-derived cells from extracted wisdom teeth were multipotent mesenchymal stem cells, have the properties of multi-lineage differentiations. Especially, stem cells from root apical papilla (SCAP) have much advantage in osteogenic differentiation, whereas dental follicle cells (DFCs) have a characteristic of easy adipogenic differentiation.

노지 및 시설재배 삼채 뿌리 및 잎의 이화학 성분, DPPH 라디칼 소거능 및 Nitric Oxide 생성 억제효과 (Chemical Components, DPPH Radical Scavenging Activity and Inhibitory Effects on Nitric Oxide Production in Allium hookeri Cultivated under Open Field and Greenhouse Conditions)

  • 원준연;유영춘;강은주;양해;김관후;성봉재;김선익;한승호;이석수;이가순
    • 한국식품영양과학회지
    • /
    • 제42권9호
    • /
    • pp.1351-1356
    • /
    • 2013
  • 삼채를 식품으로써 활용도를 높이기 위하여 노지 및 하우스 재배에 의한 삼채의 뿌리 및 잎에 대한 식품학적인 특성을 조사하였다. 삼채의 수분함량은 뿌리에서 81.05~84.18%, 잎에서는 88.85~90.12%이었으며, 가용성 무질소물인 탄수화물군은 뿌리에서 13.49~16.20%, 잎에서는 7.08~7.79%를 함유하고 있었다. 무기질 성분 중 가장 많은 무기질은 노지 및 하우스 재배 모두 K으로 잎에서는 503.98~512.08 mg%를 함유하고 있었다. 노지 재배에 의한 삼채는 뿌리 중 유리당 함량이 잎 부위보다 약 4배 이상 높은 함량이었고, 하우스 재배 삼채는 뿌리보다 잎에서 약 3배 이상 높았다. 특히 fructose의 경우는 하우스 재배 삼채보다 노지 재배 삼채 뿌리가 약 12배 정도 더 높았다. 삼채의 조사포닌 및 총폴리페놀 함량은 뿌리보다 잎에서, 하우스 재배보다 노지 재배 삼채에서 더 많이 함유하고 있었다. 노지 및 하우스 재배 삼채의 뿌리와 잎 부위 추출물에 대한 DPPH radical 소거활성은 70% MeOH 잎 추출물에서 훨씬 소거활성이 높았으며 특히 하우스 재배 삼채 잎의 70% MeOH 추출물은 소거활성이 가장 높아 $IC_{50}$의 값이 2.74 mg/mL이었다. 마우스 대식세포에서의 세포증식에 미치는 영향에서는 하우스 재배 삼채 잎의 물 및 70% 메탄올 추출물 모두 가장 높은 농도인 10배 희석액을 처리하여서도 독성이 없었으며 LPS로 유도처리한 RAW 264.7 대식세포에서 NO의 생성을 억제현상은 70% 메탄올 추출물에서는 노지 및 하우스 재배 모두 농도 의존적으로 NO의 생성을 억제하였다. 특히 노지 재배 삼채 잎에서는 독성이 나타나지 않는 90배 희석액 처리 시에도 NO의 생성을 강하게 저해시켰다.