• Title/Summary/Keyword: Source-term

Search Result 1,048, Processing Time 0.03 seconds

Verification of MCNP/ORIGEN-2 Model and Preliminary Radiation Source Term Evaluation of Wolsung Unit 1 (월성 1호기 MCNP/ORIGEN-2 모델 검증 및 예비 선원항 계산)

  • Noh, Kyoungho;Hah, Chang Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.21-34
    • /
    • 2015
  • Source term analysis should be carried out to prepare the decommissioning of the nuclear power plant. In the planning phase of decommissioning, the classification of decommissioning wastes and the cost evaluation are performed based on the results of source term analysis. In this study, the verification of MCNP/ORIGEN-2 model is carried out for preliminary source term calculation for Wolsung Unit 1. The inventories of actinide nuclides and fission products in fuel bundles with different burn-up were obtained by the depletion calculation of MCNPX code modelling the single channel. Two factors affecting the accuracy of source terms were investigated. First, the neutron spectrum effect on neutron induced activation calculation was reflected in one-group microscopic cross-sections of relevant radio-isotopes using the results of MCNP simulation, and the activation source terms calculated by ORIGEN-2 using the neutron spectrum corrected library were compared with the results of the original ORIGEN-2 library (CANDUNAU.LIB) in ORIGEN-2 code package. Second, operation history effect on activation calculation was also investigated. The source terms on both pressure tubes and calandria tubes replaced in 2010 and calandria tank were evaluated using MCNP/ORIGEN-2 with the neutron spectrum corrected library if the decommissioning wastes can be classified as a low level waste.

Source to teminal reliability evaluation by network decomposition (분할에 의한 네트워크의 국간신뢰도 계산)

  • 서희종;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.375-382
    • /
    • 1996
  • In this paper, aneffective method for computing source to terminal reliability of network by decomposition is described. A graph is modeled after a network, and decomposed into two subgraphs. A logic product term of one subgraph is computed, and a graph of the other subgraphs is made according to the event representing the logic product term, and it's logic product term is compted. By multiplying the logic product term of one subgraph by that of the other subgraphs, a method for computing the source to terminal reliability is proposed. the time complexity for computing all the logic product terms of one subgraph is the product of copies of the number of edges in the subgraph of 2, and that of the other subgraph is the number of edges multiplied by the number of logic product terms. This method requires less computation time than that not by decomposition.

  • PDF

Finite-Volume Model for Shallow-Water Flow over Uneven Bottom (고르지 않은 바닥을 지나는 천수 흐름에 대한 유한체적 모형)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.139-153
    • /
    • 2013
  • For analyzing shallow-water flows over the uneven bottom, the HLLL scheme and the divergence form for bed slope source term (DFB) technique, respectively were applied to the flux gradient and the bottom gradient source terms in a finite-volume model for the shallow water equations. And also the model incorporated the volume/free-surface relationship (VFR) to consider the partially submerged cells (PSC). It was identified that a simpler version of the weighted surface-depth gradient method in the MUSCL was equivalent to the original one in the accuracy for 1D steady flows. It was verified that the flux gradient term and the bottom gradient source term were well-balanced exactly by the VFR for the 1D PSC. The VFR for the triangular PSC settled the problem which the governing equations were not well-balanced by the DFB technique for the 2D PSC. There were good agreements in simulations and experiments for 2D dam-break flows over a triangular sill and a round bump. In addition, the partial dam-break flow was successfully simulated for flooding of roughnesses in an irregular bottom as well as a sloping one. Therefore, this model is expected to be applied to the real river with uneven topography.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

A UNIFORMLY CONVERGENT NUMERICAL METHOD FOR A WEAKLY COUPLED SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND WEAK INTERIOR LAYERS

  • CHAWLA, SHEETAL;RAO, S. CHANDRA SEKHARA
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.635-648
    • /
    • 2015
  • We consider a weakly coupled system of singularly perturbed convection-diffusion equations with discontinuous source term. The diffusion term of each equation is associated with a small positive parameter of different magnitude. Presence of discontinuity and different parameters creates boundary and weak interior layers that overlap and interact. A numerical method is constructed for this problem which involves an appropriate piecewise uniform Shishkin mesh. The numerical approximations are proved to converge to the continuous solutions uniformly with respect to the singular perturbation parameters. Numerical results are presented which illustrates the theoretical results.