• Title/Summary/Keyword: Source of loss

Search Result 1,216, Processing Time 0.026 seconds

Analysis of Acoustic Characteristics of Muffler including Flow effects (유체유동을 포함한 소음기의 음향 특성 해석)

  • Kim, Hyung-Tae;Jeong, Weu-Bong;Kim, Heui-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.861-864
    • /
    • 2006
  • In general, 4-pole parameter and three-point method are used for predicting transmission loss which is one of characteristics of Muffler using CAE tools. However, these mehtods show different results from experiment when the flow effects are presented in practical model. In this parer, to overcome these problems, both Fluent and.Sysnoise are used to analyze the performance of extended inlet/outlet muffler including flow effects with varying flow velocity at inlet of duct. Flow fields and quadrupole source is calculated by Fluent. And Sysnoise is used to analyze acoustic performances of muffler with quadrupole source data extracted from Fluent. Finally, the variation of transmission loss is estimated according to various inlet flow velocity.

  • PDF

Optimal Design of Power Loss for 3 Phase Voltage Source Inverter by using Thermal Management (써멀 메니지먼트(Thermal Management)에 의한 3상 전압형 인버터의 전력손실 최적화 설계)

  • Cho, S.E.;Park, S.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1757-1762
    • /
    • 2007
  • Recently, the demand for the low cost power conversion equipment is rapidly increased. To develop this three phase voltage source inverter, optimum power conversion equipment to system is designed. The optimum operation method to minimize the power loss also satisfy the life time of the power electronics that is request in the present industry. In this paper, the efficient operating method to change of the acceleration, jerk, and switching frequency in the interval of acceleration is selected to optimize the power loss and life time of the power electronics by using the elevator model. So, we proposed the method that 50[A] rating power electronics is adopted in 9[kW] load.

The Development of Calculation Algorithm of Power Loss for Inverter in BLDC Motor Drive with Switching Modes (스위칭 방식에 따른 BLDC Motor 구동용 인버터의 전력 손실 계산 알고리즘 개발)

  • Kim, Sang-Hoon;Lee, Young-Cheol
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.119-126
    • /
    • 2004
  • BLDC Motor is one of the widely utilizable motors in servo system. The accurate calculation of the power loss for the IGBT and Inverse diode with Bipolar and Unipolar switching modes the driving modes is important for the design of drives for their heat treatment. If it were not for temperature-sensors in devices, it is difficult to get direct power loss, so. Power losses may be modeled by computer modeling to obtain the Calculation of the Power loss for Inverter in BLDC Motor with switching modes which is presented in this paper. The computer modeling is carried out by Matlab simulation. The power loss consists of conduction losses Conduction losses are the source of occurrence due to The IGBT and Inverse diode currents. Switching losses are the source of occurrence due to switching on/off in the devices, and gives the dominant influence to the loss. As a result, the unipolar I mode is best in reducing the heat losses.

  • PDF

Clamping-diode Circuit for Marine Controlled-source Electromagnetic Transmitters

  • Song, Hongxi;Zhang, Yiming;Gao, Junxia;Zhang, Yu;Feng, Xinyue
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.395-406
    • /
    • 2018
  • Marine controlled-source electromagnetic transmitters (MCSETs) are important in marine electromagnetic exploration systems. They play a crucial role in the exploration of solid mineral resources, marine oil, and gas and in marine engineering evaluation. A DC-DC controlled-source circuit is typically used in traditional MCSETs, but using this circuit in MCSETs causes several problems, such as large voltage ringing of the high-frequency diode, heating of the insulated-gate bipolar transistor (IGBT) module, high temperature of the high-frequency transformer, loss of the duty cycle, and low transmission efficiency of the controlled-source circuit. This paper presents a clamping-diode circuit for MCSET (CDC-MCSET). Clamping diodes are added to the controlled-source circuit to reduce the loss of the duty ratio and the voltage peak of the high-frequency diode. The temperature of the high-frequency diode, IGBT module, and transformer is decreased, and the service life of these devices is prolonged. The power transmission efficiency of the controlled-source circuit is also improved. Saber simulation and a 20 KW MCSET are used to verify the correctness and effectiveness of the proposed CDC-MCSET.

Research on Line Overload Emergency Control Strategy Based on the Source-Load Synergy Coefficient

  • Ma, Jing;Kang, Wenbo;Thorp, James S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1079-1088
    • /
    • 2018
  • A line overload emergency control strategy based on the source-load synergy coefficient is proposed in this paper. First, the definition of the source-load synergy coefficient is introduced. When line overload is detected, the source-load branch synergy coefficient and source-load distribution synergy coefficient are calculated according to the real-time operation mode of the system. Second, the generator tripping and load shedding control node set is determined according to the source-load branch synergy coefficient. And then, according to the line overload condition, the control quantity of each control node is determined using the Double Fitness Particle Swarm Optimization (DFPSO), with minimum system economic loss as the objective function. Thus load shedding for the overloaded line could be realized. On this basis, in order to guarantee continuous and reliable power supply, on the condition that no new line overload is caused, some of the untripped generators are selected according to the source-load distribution synergy coefficient to increase power output. Thus power supply could be restored to some of the shedded loads, and the economic loss caused by emergency control could be minimized. Simulation tests on the IEEE 10-machine 39-bus system verify the effectiveness and feasibility of the proposed strategy.

Heat transport characteristics by heat generation of electrochemical reactions in proton exchange membrane fuel cell (고분자전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3377-3382
    • /
    • 2007
  • In proton exchange membrane fuel cell, the heat is generated at the catalyst layer as result of exothermic electrochemical reaction. This heat increases temperature of gas diffusion layer and membrane whose conductivity is very sensitive to humidity, function of temperature. So it is very important to analysis heat transfer through fuel cell to maintain temperature at specified range. In this paper numerical simulation was done including reversible, irreversible, ionic resistance, water formation loss to source term of energy equation. Results show that irreversible and water formation loss contributes mainly to energy source term and as current density increases, all of energy source terms become increased and Nusselt number is increased as results of more heat generation. Particularly irreversible loss is found to be predominant among the all energy source and water formation at cathode channel influences the temperature distribution of fuel cell greatly.

  • PDF

The Effect of Heat Loss on the Radial Heat Flow in the Flash Method (반경방향 열흐름 섬광법에서 열손실의 영향)

  • 이홍주;김순규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.257-264
    • /
    • 1989
  • For the extension of the flash method the heat diffusion equation with heat loss and with an arbitrary heat pulse is mathematically analyzed. In the analysis the heat loss includes the axial and radial directions on the front, rear and peripheral surfaces. The heat pulse is irradiated from the source to the front surface of the sample and the heat receiving area on the front surface is controlled by the apertures of an optical system. From this analysis the thermal diffusivity of the samples can be determined more precisely than before by the data reduction method using various percent time. The data can be obtained by the extended radial flash technique adjusted correctly the heating area on the central part of the front surface with a proper aperture or the conventional axial flash technique heated uniformly all parts of the front surface.

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치)

  • Park, S.W.;Joun, J.H.;Bae, Y.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.125-127
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to got smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is setting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method has been paid attention as a source technology in electronics and communication.

  • PDF

Loss Analysis of Three Phase Induction Motor Connected to Single Phase Source (단상전원에 접속된 3상 유도전동기의 손실분석)

  • Kim, Do-Jin;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • This paper analyzes the losses of a Steinmetz connection three-phase induction motor which is supplied by a single-phase source. The T-type equivalent circuit which is taken no-load losses into account is used to determine phase converter capacitive reactances at starting and rated speed by using the condition of the minimum voltage unbalance. The starting and the operating capacitor are replaced at the slip of the same voltage unbalance factor points which are depicted using two capacitive reactances. The operation characteristics are investigated by comparing with those of three-phase balanced operation to find the feasibility of single-phase operation. To analyze the losses of this motor, the output power decrease factor(OPDF), the loss ratio(LR), the no load loss ratio(NLLR), the copper loss ratio(CLR), the stator copper loss ratio(SCLR), and the rotor copper loss ratio(RCLR) are defined and simulated in the whole slip range. The simulated results show that OPDF is maintained almost uniformly, LR is low at low speed and high at high speed, CLR is higher !ban NLLR, but CLR varies concavely and NLLR varies convexly at high speed, SCLR is low at low speed and high at high speed, but SCLR varies convexly at high speed, and RCLR is nearly opposite to SCLR.

Geoacoustic Inversion via Transmission Loss Matching and Matched Field Processing (전달손실 비교를 통한 지음향학적 인자 역산과 정합장처리)

  • Kim Kyungseop;Park Cheolsoo;Kim Seongil;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.325-333
    • /
    • 2005
  • This paper proposes a geoacoustic inversion method for the experimental data or MAPLE 2004 experiment conducted in the East Sea of Korea in 2004 and shows source tracking test results to validate the Proposed inversion method. An objective function is defined as a correlation function of the measured and the simulated transmission loss data. The measured transmission data were obtained using a multi-tonal towed source and VLA. The VFSA (Very Fast Simulated Annealing) is applied to the inversion Problem which optimizes the objective function. After performing the inversion process for the S frequencies tonal data independently. geoacoustic models are constructed. Finally matched-field source tracking is Performed using the inverted parameters to verify them.