• Title/Summary/Keyword: Source node

Search Result 596, Processing Time 0.024 seconds

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Investigation of standing wave acoustic levitation with Bernoulli principle and bolt-clamped Langevin type ultrasonic transducer (베르누이 원리와 bolt-clamped Langevin type 초음파 진동자를 이용한 정상파 음파 공중부양의 탐구)

  • Park, Mincheol;Park, Doojae;Kim, Young H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.422-427
    • /
    • 2018
  • The purpose of this study is to investigate the effect of acoustic radiation force on the standing wave acoustic levitation phenomenon, which is the levitation of small objects near the pressure node of the standing wave, using the Bernoulli principle. The source and scheme of the acoustic radiation force, which is the cause of the levitation, are conceptually explained through comparison with the graph of the acoustic radiation force versus the distance from the transducer. A series of experiments supporting this explanation was performed with a BLT(Bolt-clamped Langevin Type) ultrasonic transducer to confirm that the objects are floating near the pressure nodes and that it satisfies the condition for the standing wave formation when the object is levitating. Furthermore, the vertical alignment of floating objects, which is a characteristic of standing wave acoustic levitation phenomenon, could be explained.

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

Promoted Growth and Development of Carnation Plantlets In Vitro by Ventilation and Combined Red and Blue Light

  • Nguyen, Quan Hoang;Thi, Luc The;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.166-178
    • /
    • 2018
  • In this study, the principal objective was to investigate the effect of light quality and vessel ventilation on the growth and development, physiology, activities of antioxidant enzymes, and contents of mineral nutrients of carnation (Dianthus caryophyllus L.) 'Marble Beauty'. Single node cuttings stuck into the plant growth regulator (PGR)-free MS medium in containers covered with caps with or without a ventilation filter were cultured first four weeks under white and then additional four weeks under either white (control), blue, red, or red + blue light emitting diodes (LEDs) for 56 days. Interestingly, a ventilated culture condition not only reduced the percentage of the hyperhydricity, but also increased the total chlorophyll content (Chl a + Chl b) of the plantlets as compared to the non-ventilated condition. In addition, blue LEDs produced plantlets with the greatest number of shoots and red LEDs produced plantlets with the greatest shoot length. The quality of plantlets was improved under a ventilation condition. Besides, under a ventilated condition, red + blue LEDs raised APX activity, and blue LEDs not only raised the activity of the CAT, but also increased tissue contents of such elements as K, Ca, Mg, Zn, Mn and Fe. The red LEDs increased contents of B and Si under a ventilated condition, and Na accumulation under a non-ventilated condition. Thus, including blue or red LEDs as the light source in a ventilated culture condition will produce plantlets of carnation 'Marble Beauty' in vitro with improved quality.

Synchronized Transmission for Real-Time Remote Control in the Wireless Network (무선 네트워크에서 실시간 원격제어를 위한 동기화 전송)

  • Kang, Hongku;Kim, Namgon;Kim, Jong-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.64-70
    • /
    • 2021
  • Nowadays, there are significant interests in real-time remote control using wireless networks. In implementing real-time remote control, one important factor is delay performance of real-time control message. Especially, the technique to reduce jitter of delay is necessary in transmitting periodically real-time control message. In this paper, we proposed synchronized transmission to reduce jitter of delay, when real-time control message was transmitted through wireless networks. The proposed transmission kept synchronization between source node and wireless transmitter and controlled transmission instance to transmit real-tie control message with fixed delay in wireless networks. According to results of experiment in military unmanned vehicle system, the proposed transmission reduced jitter of delay as 32% as that of a non-employing case.

Kriging Regressive Deep Belief WSN-Assisted IoT for Stable Routing and Energy Conserved Data Transmission

  • Muthulakshmi, L.;Banumathi, A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.91-102
    • /
    • 2022
  • With the evolution of wireless sensor network (WSN) technology, the routing policy has foremost importance in the Internet of Things (IoT). A systematic routing policy is one of the primary mechanics to make certain the precise and robust transmission of wireless sensor networks in an energy-efficient manner. In an IoT environment, WSN is utilized for controlling services concerning data like, data gathering, sensing and transmission. With the advantages of IoT potentialities, the traditional routing in a WSN are augmented with decision-making in an energy efficient manner to concur finer optimization. In this paper, we study how to combine IoT-based deep learning classifier with routing called, Kriging Regressive Deep Belief Neural Learning (KR-DBNL) to propose an efficient data packet routing to cope with scalability issues and therefore ensure robust data packet transmission. The KR-DBNL method includes four layers, namely input layer, two hidden layers and one output layer for performing data transmission between source and destination sensor node. Initially, the KR-DBNL method acquires the patient data from different location. Followed by which, the input layer transmits sensor nodes to first hidden layer where analysis of energy consumption, bandwidth consumption and light intensity are made using kriging regression function to perform classification. According to classified results, sensor nodes are classified into higher performance and lower performance sensor nodes. The higher performance sensor nodes are then transmitted to second hidden layer. Here high performance sensor nodes neighbouring sensor with higher signal strength and frequency are selected and sent to the output layer where the actual data packet transmission is performed. Experimental evaluation is carried out on factors such as energy consumption, packet delivery ratio, packet loss rate and end-to-end delay with respect to number of patient data packets and sensor nodes.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

Static Filtering Probability Control Method Based on Reliability of Cluster in Sensor Networks (센서 네트워크에서 클러스터 신뢰도 기반 정적 여과 확률 조절 기법)

  • Hur, Suh-Mahn;Seo, Hee-Suk;Lee, Dong-Young;Kim, Tae-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.161-171
    • /
    • 2010
  • Sensor Networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. Ye et al. proposed the Statistical En-route Filtering scheme to overcome this threat. In statistical en-route filtering scheme, all the intermediate nodes perform verification as event reports created by center of stimulus node are forwarded to the base station. This paper applies a probabilistic verification method to the Static Statistical En-route Filtering for energy efficiency. It is expected that the farther from the base station an event source is, the higher energy efficiency is achieved.

Energy Efficient Routing Protocols based on LEACH in WSN Environment (WSN 환경에서 LEACH 기반 에너지 효율적인 라우팅 프로토콜)

  • Dae-Kyun Cho;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.609-616
    • /
    • 2023
  • In a wireless network environment, since sensors are not always connected to power, the life of a battery, which is an energy source supplied to sensors, is limited. Therefore, various studies have been conducted to extend the network life, and a layer-based routing protocol, LEACH(: Low-energy Adaptive Clustering Hierarchy), has emerged for efficient energy use. However, the LEACH protocol, which transmits fused data directly to the sink node, has a limitation in that it consumes as much energy as the square of the transmission distance when transmitting data. To improve these limitations, this paper proposes an algorithm that can minimize the transmission distance with multi-hop transmission where cluster heads are chained between cluster heads through relative distance calculation from sink nodes in every round.