• Title/Summary/Keyword: Source emission

Search Result 1,449, Processing Time 0.027 seconds

The comparisons of three scatter correction methods using Monte Carlo simulation (몬테카를로 시뮬레이션을 이용한 산란보정 방법들에 대한 비교)

  • 봉정균;김희중;이종두;권수일
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Scatter correction for single photon emission computed tomography (SPECT) plays an important role to improve image quality and quantitation. The purpose of this study was to investigate three scatter correction methods using Monte Carlo simulation. Point source and Jaszack phantom filled with Tc-99m were simulated by Monte Carlo code, SIMIND. For scatter correction, we applied three methods, Compton window (CW) method, triple window (TW) method, and dual photopeak window (DPW) method. Point sources located at various depths along the center line within a 20-cm phantom were simulated to calculate the window ratios and corresponding scatter fractions by evaluating the polynomial coefficients for DPW method. Energy windows were located in W$_1$=92-125 keV, W$_2$=124-126 keV, W$_3$=136-140 keV, W$_4$=140-141 keV, and W$_{5}$=154-156 keV. The results showed that in Jaszack phantom with cold sphere and hot sphere, the TW gave the closest contrast and percentage recovery to the ideal image, respectively, while CW overestimated and DPW underestimated the contrast of ideal one. All three scatter correction methods showed an improved image contrast. In conclusion, scatter correction is essential for improving image contrast and accurate quantification. The choice of scatter correction method should be made on the basis of accuracies and ease of implementation.

  • PDF

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon (대전지역 대기 중 PM2.5의 유기탄소와 원소탄소의 계절별 특성 연구)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.

Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea (북한산국립공원 내 초미세먼지 농도 및 화학적 특성)

  • Kang, Seokwon;Kang, Taewon;Park, Taehyun;Park, Gyutae;Lee, Junhong;Hong, Je-Woo;Hong, Jinkyu;Lee, Jaehong;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.457-468
    • /
    • 2018
  • To improve understanding of the physico-chemical characteristics of aerosols in the national park and comparing the air pollution between national park and the urban area nearby national park, the aerosol characterization study was conducted in Bukhansan National Park, Seoul, from July through September 2017. Semi-continuous measurements of $PM_{2.5}$ using PILS (Particle Into Liquid System) coupled with IC (Ion Chromatography) and TOC (Total Organic Carbon) analyzer allowed quantification of concentrations of major ionic species($Cl^-$, $SO_4{^{2-}}$, $NO_3{^-}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg{^{2+}}$ and $Ca{^{2+}}$) and water soluble organic carbon (WSOC) with 30-minute time resolution. The total mass concentration of $PM_{2.5}$ was measured by T640 (Teledyne) with 5-minute time resolution. The black carbon (BC) and ozone were measured with a minute time resolution. The timeline of aerosol chemical compositions reveals a strong influence from urban area (Seoul) at the site in Bukhansan National Park. Inorganic aerosol composition was observed to be dominated by ammoniated sulfate at most times with ranging from $0.1{\sim}32.6{\mu}g/m^3$ (6.5~76.1% of total mass of $PM_{2.5}$). The concentration of ammonium nitrate, a potential indicator of the presence of local source, ranged from below detection limits to $20{\mu}g/m^3$ and was observed to be highest during times of maximum local urban (Seoul) impact. The total mass of $PM_{2.5}$ in Bukhansan National Park was observed to be 10~23% lower than the total mass of $PM_{2.5}$ in urban area (Gireum-dong and Bulgwang-dong, Seoul). In general, ozone concentration in Bukhansan National Park was observed to be similar or higher than urban sites in Seoul, suggesting additional biogenic VOCs with $NO_x$ from vehicle emission were to be precursors for ozone formation in Bukhansan National Park.

Optimization of Parallel-Hole Collimator for Small Gamma Camera Based on Pixellated Crystal Array (배열형 섬광결정을 이용한 소형 감마카메라의 평행구멍형 조준기 최적화 연구)

  • Chung, Yong-Hyun;Beak, Cheol-Ha;Lee, Seung-Jae;Park, Jin-Hyung
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.291-297
    • /
    • 2008
  • The purpose of this study is to optimize a parallel-hole collimator for small gamma camera having the pixellated crystal array and evaluate the effect of crystal-collimator misalignment on the image quality using a simulation tool GATE (Geant4 Application for Tomographic Emission). The spatial resolution and sensitivity were measured for the various size of hexagonal-hole and matched square-hole collimators with a Tc-99m point source and the uniformity of flood image was estimated as a function of the angle between crystal array and collimator by misalignment. The results showed that the spatial resolution and sensitivity were greatly improved by using the matched collimator and the uniformity was reduced by crystal-collimator misalignment.

  • PDF

Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique (Indium Interruption Growth법으로 성장한 InAs 양자점의 광학적 특성)

  • Lee, Hi-Jong;Ryu, Mee-Yi;Kim, Jin-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.474-480
    • /
    • 2009
  • We have investigated optical properties of InAs quantum dots (QDs) grown on GaAs (100) substrate by molecular beam epitaxy, by means of photoluminescence (PL) and time-resolved PL spectroscopy. InAs QDs were grown by using In interruption growth technique, in which the In flux was periodically interrupted by a closed In shutter during InAs QDs growth. The shutter of In source was opened for 1 s and then closed for 0, 9, 19, 29, or 39 s. This growth sequence was repeated 30 times during QDs growth. For each sample, the total amount of In contributing to the growth was the same (30 s) but total growth time was varied during the InAs growth. As the In interruption time is increased from 0 to 19 s, the PL peak position of the QDs is red-shifted from 1096 to 1198 nm, and the PL intensity is increased. However, the PL peak is unchanged and the intensity is decreased as the In interruption time is increased further to 39 s. The PL decay times measured at the PL peak position for all the InAs QDs are independent on the QD growth conditions and showed about 1 ns. The red-shift of PL peak and the increase of PL intensity can be explained due to increased QD size and the enhancement in the migration of In atoms using In interruption technique. These results indicated that the size and shape of InAs QDs can be controlled by using In interruption growth technique. Thus the emission wavelength of the InAs QDs on GaAs substrate can also be controlled.

Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis (공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화)

  • Kim, Jooil;Park, Sunyoung;Park, Mi-Kyung;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.

Exposure and Toxicity Assessment of Ultrafine Particles from Nearby Traffic in Urban Air in Seoul, Korea

  • Yang, Ji-Yeon;Kim, Jin-Yong;Jang, Ji-Young;Lee, Gun-Woo;Kim, Soo-Hwan;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.7.1-7.9
    • /
    • 2013
  • Objectives We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. Methods To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with $PM_{10}$ and $PM_{2.5}$ inlets. Results The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to $3.2{\mu}m$. The mass concentrations of the metals in fine particles (0.1 to $1.8{\mu}m$) accounted for 45.6 to 80.4% of the mass concentrations of metals in $PM_{10}$. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the $PM_{10}$ mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. Conclusions We found that exposure to $PM_{2.5}$ and $PM_{10}$ from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the $PM_{2.5}$ treatment were higher than those with $PM_{10}$. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.

Solution Processed Porous Fe2O3 Thin Films for Solar-Driven Water Splitting

  • Suryawanshi, Mahesh P.;Kim, Seonghyeop;Ghorpade, Uma V.;Suryawanshi, Umesh P.;Jang, Jun Sung;Gang, Myeng Gil;Kim, Jin Hyeok;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.631-635
    • /
    • 2017
  • We report facile solution processing of mesoporous hematite (${\alpha}-Fe_2O_3$) thin films for high efficiency solar-driven water splitting. $Fe_2O_3$ thin films were prepared on fluorine doped tin oxide(FTO) conducting substrates by spin coating of a precursor solution followed by annealing at $550^{\circ}C$ for 30 min. in air ambient. Specifically, the precursor solution was prepared by dissolving non-toxic $FeCl_3$ as an Fe source in highly versatile dimethyl sulfoxide(DMSO) as a solvent. The as-deposited and annealed thin films were characterized for their morphological, structural and optical properties using field-emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectroscopy. The photoelectrochemical performance of the precursor (${\alpha}-FeOOH$) and annealed (${\alpha}-Fe_2O_3$) films were characterized and it was found that the ${\alpha}-Fe_2O_3$ film exhibited an increased photocurrent density of ${\sim}0.78mA/cm^2$ at 1.23 V vs. RHE, which is about 3.4 times higher than that of the ${\alpha}-FeOOH$ films ($0.23mA/cm^2$ at 1.23 V vs. RHE). The improved performance can be attributed to the improved crystallinity and porosity of ${\alpha}-Fe_2O_3$ thin films after annealing treatment at higher temperatures. Detailed electrical characterization was further carried out to elucidate the enhanced PEC performance of ${\alpha}-Fe_2O_3$ thin films.

Long-term Impact of Single Rice Cropping System on SOC Dynamics (동일비료장기연용 논에서 토양유기탄소의 변동)

  • Jung, Won-Kyo;Kim, Sun-Kwan;Yeon, Byung-Yul;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.292-297
    • /
    • 2007
  • Global warming and climate changes have been major issues for decades andvarious researches have reported their impact on our environment. According to recent researches, increased carbon dioxide ($CO_2$) concentration in the atmosphere is considered as a dominant contributor to global climate changes and thus numerous researches were conducted to control $CO_2$ concentration in the atmosphere. Soil management practices, such as reducing tillage intensity, returning plant residues, and enhancing cropping system have recommended for restoring organic carbon into the soils effectively. However, few studies on soil carbon sequestration have reported for Korean paddy soils. Therefore, evaluation of soil organic carbon (SOC) dynamics in the long-term single rice cropping system is essential in order to find out potential capacity of paddy field as a carbon sink source. The objective of this research was to evaluate SOC dynamics on the long-term single rice cropping system. Research was conducted in the research farm at National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon. Long-term phosphorus and potassium fertilization and lime application didn't significantly affect on SOC compared to controls. We found that SOC contents were increased continually at the long-term composting plots with enhanced rate of carbon storage. In conclusion, continuous incorporation of plant residues (i.e., composting) is recommended to effectively sequester soil carbon for Korean paddy soils. This result implies that continuous composting in a paddy field may contributenot only for increasing SOC in the soils but also for mitigating global warming through reducing carbon dioxide emission into atmosphere. Therefore, we recommend that a strategy or policy measures to encourage farmers to return plant residues continuously for mitigation of global warming as well as soil fertility is being developed.