Browse > Article
http://dx.doi.org/10.5572/KOSAE.2015.31.1.028

Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon  

Kim, Hyosun (Department of Environmental Engineering, Chungnam National University)
Jung, Jinsang (Center for Gas Analysis, Korea Research Institute of Standards and Science)
Lee, Jinhong (Department of Environmental Engineering, Chungnam National University)
Lee, Sangil (Center for Gas Analysis, Korea Research Institute of Standards and Science)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.31, no.1, 2015 , pp. 28-40 More about this Journal
Abstract
To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.
Keywords
$PM_{2.5}$; Organic carbon; Elemental carbon; Water-soluble organic carbon; Carbonaceous aerosol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Schmidl, C., I.L. Marr, A. Caseiro, P. Kotianova, A. Berner, H. Bauer, A. Kasper-Giebl, and H. Puxbaum (2008a). Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions, Atmos. Environ., 42(1), 126-141.   DOI   ScienceOn
2 Seinfeld, J.H. and S.N. Pandis (2012) Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, USA, 628-690.
3 Sheesley, R.J., J.J. Schauer, Z. Chowdhury, G.R. Cass, and B.R. Simoneit (2003). Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia, J. Geophys. Res., 108(D9), 4285, doi:10.1029/2002JD002981.   DOI
4 Simoneit, B.R. (2002) Biomass burning-a review of organic tracers for smoke from incomplete combustion, Applied Geochemistry, 17(3), 129-162.   DOI   ScienceOn
5 Slaughter, J.C., E. Kim, L. Sheppard, J.H. Sullivan, T.V. Larson, and C. Claiborn (2004) Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington, J. Expo. Sci. Environ. Epidemiol., 15(2), 153-159.
6 Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.H. Woo, and K.F. Yarber (2003a) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.   DOI
7 Streets, D.G., K.F. Yarber, J.H. Woo and G.R. Carmichael (2003b) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles 17(4).
8 Sullivan, A.P., A.S. Holden, L.A. Patterson, G.R. McMeeking, S.M. Kreidenweis, W.C. Malm, W.M. Hao, C.E. Wold, and J.L. Collett Jr (2008) A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient $PM_{2.5}$ organic carbon, J. Geophys. Res., 113, D22302, doi:10.1029/2008JD010216.   DOI
9 Sullivan, A.P., R.J. Weber, A.L. Clements, J.R. Tuner, M.S. Bae, and J.J. Schauer (2004) A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site, Geophys. Res. Lett., 31, L13105, doi:10.1029/2004GL019681.   DOI   ScienceOn
10 Tobias, H.J., D.E. Beving, P.J. Ziemann, H. Sakurai, M. Zuk, P.H. McMurry, D. Zarling, R. Waytulonis, and D.B. Kittelson (2001) Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer, Environ. Sci. Technol., 35(11), 2233-2243.   DOI   ScienceOn
11 Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34(18), 2983-3013.   DOI   ScienceOn
12 Turpin, B.J. and H.J. Lim (2001) Species contributions to $PM_{2.5}$ mass concentrations : Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602-610.   DOI   ScienceOn
13 U.S. EPA (U.S. Enviromental Protection agency) (2009), Integrated science assessment for particulate matter, EPA/600/R-08/139F, December.
14 Weber, R.J., A.P. Sullivan, R.E. Peltier, A. Russell, B. Yan, M. Zheng, J. de Gouw, C. Warneke, C. Brock, J.S. Holloway, E.L. Atlas, and E. Edgerton (2007) A study of secondary organic aerosol formation in the anthropogenic influenced southeastern United States, J. Geophys. Res., 112, D13302, doi:10.1029/2007JD008408.   DOI
15 Andrew Gray, H. and G.R. Cass (1998), Source contributions to atmospheric fine carbon particle concentrations. Atmos. Environ., 32(22), 3805-3825.   DOI   ScienceOn
16 Wonaschutz, A., S.P. Hersey, A. Sorooshian, J.S. Craven, A.R. Metcalf, R.C. Flagan, and J.H. Seinfeld (2011). Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County, Atmos. Chem. Phys., 11 (16), 8257-8270.   DOI
17 Yang, H., J.Z. Yu, S.S.H. Ho, J. Xu, W.S. Wu, C.H. Wan, X. Wang, X. Wang, and L. Wang (2005) The chemical composition of inorganic and carbonaceous materials in $PM_{2.5}$ in Nanjing, China, Atmos. Environ., 39(20), 3735-3749.   DOI   ScienceOn
18 Zhang, X., A. Hecobian, M. Zheng, N.H. Frank, and R.J. Weber (2010) Biomass burning impact on $PM_{2.5}$ over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10(14), 6839-6853.   DOI
19 Aggarwal, S.G. and K. Kawamura (2009) Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction, Atmos. Environ., 43, 2532-2540.   DOI   ScienceOn
20 Andreae, M.O. and P. Marelet (2001), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15(4), 955-966.   DOI   ScienceOn
21 Brich, M.E. and R.A. Cary (1996), Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Technol., 25(3), 221-241.   DOI
22 Cao, J.J., F. Wu, J.C. Chow, S.C. Lee, Y. Li, S.W. Chen, Z.S. An, K.K. Fung, J.G. Watson, C.S. Zhu, and S.X. Liu (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China, Atmos. Chem. Phys., 5(11), 3127-3137.   DOI
23 Castro, L.M., C.A. Pio, R.M. Harrison, and D.J.T. Smith (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations, Atmos. Environ., 33, 2771-2781.   DOI   ScienceOn
24 Cheng, Y., G. Engling, K.-B. He, F.-L. Duan, Y.-L. Ma, J.-M. Liu, M. Zheng, and R.J. Weber (2013) Biomass burning contribution to Beijing aerosol, Atmos. Chem. Phys., 13, 7765-7781.   DOI
25 Chow, J.C., J.G. Watson, Z. Lu, D.H. Lowenthal, C.A. Frazier, P.A. Solomon, and K. Magliano (1996) Descriptive analysis of $PM_{2.5}$ and $PM_{10}$ at regionally representative locations during SJVAQS/AUSPEX, Atmos. Environ., 30(12), 2079-2112.   DOI   ScienceOn
26 Fine, P.M., G.R. Cass, and B.R. Simoneit (2001). Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States, Environ. Sci. Technol., 35(13), 2665-2675.   DOI   ScienceOn
27 Du, Z., K. He, Y. Cheng, F. Duan, Y. Ma, J. Liu, M. Zhang, and R. Weber (2014) A yearlong study of watersoluble organic carbon in Beijing I: Sources and its primary vs secondary nature, Atmos. Environ., 92, 514-521.   DOI   ScienceOn
28 Duan, F., X. Liu, T. Yu, and H. Cachier (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, Atmos. Environ., 38(9), 1275-1282.   DOI   ScienceOn
29 Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401(6750), 257-259.   DOI
30 Fine, P.M., G.R. Cass, and B.R. Simoneit (2002). Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States, Environ. Sci. Technol., 36(7), 1442-1451.   DOI   ScienceOn
31 Fine, P.M., G.R. Cass, and B.R. Simoneit (2004). Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species, Environ. Eng. Sci., 21(6), 705-721.   DOI   ScienceOn
32 Han, Y.J., T.S. Kim, and H. Kim (2008) Ionic constituents and source analysis of $PM_{2.5}$ in three Korean cities, Atmos. Environ., 42, 4735-4746.   DOI   ScienceOn
33 Ho, K.F., S.C. Lee, C.K. Chan, J.C. Yu, J.C. Chow, and X.H. Yao (2003) Characterization of chemical species in $PM_{2.5}$ and $PM_{10}$ aerosols in Hong Kong, Atmos. Environ., 37(1), 31-39.   DOI   ScienceOn
34 IPCC (2007) Climate Change 2007 : the physical science basis. Contribution of Working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, USA.
35 Huang, X.F. and J.Z. Yu (2007) Is vehicle exhuast a significant promary source of oxalic acid in ambient aerosols?, Geophys. Res. lett., 34, L02808, doi:10.1029/2006GL028457.   DOI   ScienceOn
36 Huang, X.F., J.Z. Yu, L.Y. He, and Z. Yuan (2006) Water soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms, J. Geophys. Res., 111, D22212, doi:10.1029/2006JD007408.   DOI
37 Iinuma, Y., G. Engling, H. Puxbaum, and H. Herrmann (2009) A highly resolved anion-exchange chromatographic method for determination of saccharidic tracer for biomass combustion and promary bio-particles in atmospheric aerosol, Atmos. Environ., 43, 1352-2310.
38 Jacob, D.J. and D.A. Winner (2009) Effect of climate change on air quality, Atmos. Environ., 43(1), 51-63.   DOI   ScienceOn
39 Jaffrezo, J.-L., G. Aymoz, C. Delaval, and J. Cozic (2005) Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the french Alps, Atmos. Chem. Phys., 5, 2809-2821.   DOI
40 Jung, J., S. Lee, H. Kim, D. Kim, H. Lee, and S. Oh (2014) Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period, Atmos. Environ., 89, 642-650.   DOI   ScienceOn
41 Kaufman, Y., D. Tanre, and O. Boucher (2002) A Satellite View of Aerosols in the Climate System, Nature, 219, 215-223.
42 Lee, H.W., T.J. Lee, and D.S. Kim (2009) Identifying ambient $PM_{2.5}$ source and estimating their contributions by using PMF : separation of gasoline and diesel automobils sources by analyzing ECs and OCs, J. KOSAE, 25(1), 75-89. (in Korean with English abstract)
43 Kim, S.Y., M.H. Chung, B.S. Son, W.H. Yang, and K.H. Choi (2005) A study on airborne particulate matter of a local area in Seoul, Kor. J. Env. Hlth, 31(4), 301-308. (in Korean with English abstract)
44 Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R.J. Weber, J.L. Jimenez, Q. Zhang, and D.R. Worsnop (2007) Oxygenated and water soluble organic aerosols in Tokyo, J. Geophys. Res., 112, D01203, doi:10.1029/2006JD007056.   DOI
45 Laden, F., J. Schwartz, F.E. Speizer, and D.W. Dockery (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study, Am. J. Respir. Crit. Care Med., 173(6), 667-672.   DOI   ScienceOn
46 Lohmann, U. and J. Feichter (2005) Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5(3), 715-737.   DOI
47 Menon, S., J. Hansen, L. Nazarenko, and Y. Luo (2002) Climate effects of black carbon aerosols in China and India, Science, 297(5590), 2250-2253.   DOI   ScienceOn
48 Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, M. Fukuda, K. Kawamura, M. Mochida, and R.J. Weber (2006) Time resolved measurements of water soluble organic carbon in Tokyo, J. Geophys. Res., 111, D23206, doi:10.1029/2006JD007125.   DOI
49 Moon, K.J., S.M. Park, I.H. Song, S.K. Jang, J.C. Kim, and S.J. Lee (2011) Chemical characteristics and source apportionment of $PM_{2.5}$ in seoul Metropolitan area in 2010, J. KOSAE, 27(6), 711-722. (in Korean with English abstract)   DOI
50 Park, S.S. and S.Y. Cho (2011), Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45, 60-72.   DOI   ScienceOn
51 Pio, C.A., M. Legrand, T. Oliveira, J. Afonso, C. Santos, A. Caseiro, P. Fialho, F. Barata, H. Puxbaum, A. Sanchez-Ochoa, A. Kasper-Giebl, A. Gelencser, S. Preunkert, and M. Schock (2007) Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe, J. Geophys. Res., 112, D23S02, doi:10.1029/2006JD008038.   DOI
52 Pope, C.A., J.B. Muhlestein, H.T. May, D.G. Renlund, J.L. Anderson, and B.D. Horne (2006). Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution, Circulation, 114(23), 2443-2448.   DOI   ScienceOn
53 Ramanathan, V. and G. Carmichael (2008). Global and regional climate changes due to black carbon, Nature Geoscience, 1(4), 221-227.   DOI
54 Ruellan, S. and H. Cachier (2001) Characterisation of fresh particulate vehicular exhausts near a Paris high flow road, Atmos. Environ., 35(2), 453-468.   DOI   ScienceOn
55 Saxena, P. and L.H. Hilemann (1996) Water-soluble oranics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109.   DOI
56 Schauer, J.J., M.J. Kleeman, G.R. Cass, and B.R. Simoneit (1999) Measurement of emissions from air pollution sources. 1. $C_1$ through $C_{29}$ organic compounds from meat charbroiling, Environ. Sci. Technol., 33(10), 1566-1577.   DOI   ScienceOn
57 Schmidl, C., H. Bauer, A. Dattler, R. Hitzenberger, G. Weissenboeck, I.L. Marr, and H. Puxbaum (2008b). Chemical characterisation of particle emissions from burning leaves, Atmos. Environ., 42(40), 9070-9079.   DOI   ScienceOn