• Title/Summary/Keyword: Source Node

Search Result 603, Processing Time 0.027 seconds

Novel Two-Level Randomized Sector-based Routing to Maintain Source Location Privacy in WSN for IoT

  • Jainulabudeen, A.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 2022
  • WSN is the major component for information transfer in IoT environments. Source Location Privacy (SLP) has attracted attention in WSN environments. Effective SLP can avoid adversaries to backtrack and capture source nodes. This work presents a Two-Level Randomized Sector-based Routing (TLRSR) model to ensure SLP in wireless environments. Sector creation is the initial process, where the nodes in the network are grouped into defined sectors. The first level routing process identifies sector-based route to the destination node, which is performed by Ant Colony Optimization (ACO). The second level performs route extraction, which identifies the actual nodes for transmission. The route extraction is randomized and is performed using Simulated Annealing. This process is distributed between the nodes, hence ensures even charge depletion across the network. Randomized node selection process ensures SLP and also avoids depletion of certain specific nodes, resulting in increased network lifetime. Experiments and comparisons indicate faster route detection and optimal paths by the TLRSR model.

A Tunable Transmitter - Tunable Receiver Algorithm for Accessing the Multichannel Slotted-Ring WDM Metropolitan Network under Self-Similar Traffic

  • Sombatsakulkit, Ekanun;Sa-Ngiamsak, Wisitsak;Sittichevapak, Suvepol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.777-781
    • /
    • 2004
  • This paper presents an algorithm for multichannel slotted-ring topology medium access protocol (MAC) using in wavelength division multiplexing (WDM) networks. In multichannel ring, there are two main previously proposed architectures: Tunable Transmitter - Fixed Receiver (TTFR) and Fixed Transmitter - Tunable Receivers (FTTR). With TTFR, nodes can only receive packets on a fixed wavelength and can send packets on any wavelengths related to destination of packets. Disadvantage of this architecture is required as many wavelengths as there are nodes in the network. This is clearly a scalability limitation. In contrast, FTTR architecture has advantage that the number of nodes can be much larger than the number of wavelength. Source nodes send packet on a fixed channel (or wavelength) and destination nodes can received packets on any wavelength. If there are fewer wavelengths than there are nodes in the network, the nodes will also have to share all the wavelengths available for transmission. However the fixed wavelength approach of TTFR and FTTR bring low network utilization. Because source node with waiting data have to wait for an incoming empty slot on corresponding wavelength. Therefore this paper presents Tunable Transmitter - Tunable Receiver (TTTR) approach, in which the transmitting node can send a packet over any wavelengths and the receiving node can receive a packet from any wavelengths. Moreover, the self-similar distributed input traffic is used for evaluation of the performance of the proposed algorithm. The self-similar traffic performs better performance over long duration than short duration of the Poison distribution. In order to increase bandwidth efficiency, the Destination Stripping approach is used to mark the slot which has already reached the desired destination as an empty slot immediately at the destination node, so the slot does not need to go back to the source node to be marked as an empty slot as in the Source Stripping approach. MATLAB simulator is used to evaluate performance of FTTR, TTFR, and TTTR over 4 and 16 nodes ring network. From the simulation result, it is clear that the proposed algorithm overcomes higher network utilization and average throughput per node, and reduces the average queuing delay. With future works, mathematical analysis of those algorithms will be the main research topic.

  • PDF

Correlation analysis between energy indices and source-to-node shortest pathway of water distribution network (상수도관망 수원-절점 최소거리와 에너지 지표 상관성 분석)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.989-998
    • /
    • 2018
  • Connectivity between water source and demand node can be served as a critical system performance indicator of the degree of water distribution network (WDN)' failure severity under abnormal conditions. Graph theory-based approaches have been widely applied to quantify the connectivity due to WDN's graph-like topological feature. However, most previous studies used undirected-unweighted graph theory which is not proper to WDN. In this study, the directed-weighted graph theory was applied for WDN connectivity analyses. We also proposed novel connectivity indicators, Source-to-Node Shortest Pathway (SNSP) and SNSP-Degree (SNSP-D) which is an inverse of the SNSP value, that does not require complicate hydraulic simulation of a WDN of interest. The proposed SNSP-D index was demonstrated in total 42 networks in J City, South Korea in which Pearson Correlation Coefficient (PCC) between the proposed SNSP-D and four other system performance indicators was computed: three resilience indexes and an energy efficiency metric. It was confirmed that a system representative value of the SNSP-D has strong correlation with all resilience and energy efficiency indexes (PCC = 0.87 on average). Especially, PCC was higher than 0.93 with modified resilience index (MRI) and energy efficiency indicator. In addition, a multiple linear regression analysis was performed to identify the system hydraulic characteristic factors that affect the correlation between SNSP-D and other system performance indicators. The proposed SNSP is expected to be served as a useful surrogate measure of resilience and/or energy efficiency indexes in practice.

On Sensor Network Routing for Cloaking Source Location Against Packet-Tracing

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.213-224
    • /
    • 2009
  • Most of existing routing methods in wireless sensor networks to counter the local eavesdropping-based packet-tracing deal with a single asset and suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. Recently, the author proposed a routing method, GSLP-w(GPSR-based Source-Location Privacy with crew size w), that enhances location privacy of the packet-originating node(i.e., active source) in the presence of multiple assets, yet taking a path of not too long. In this paper, we present a refined routing(i.e., next-hop selection) procedure of it and empirically study privacy strength and delivery latency with varying the crew size w(i.e., the number of packets being sent per path). It turns out that GSLP-w offers the best privacy strength when the number of packets being sent per path is randomly chosen from the range [$1,h_{s-b}/4$] and that further improvements on the privacy are achieved by increasing the random walk length TTLrw or the probability prw that goes into random walk(where, $h_{s-b}$ is the number of hops of the shortest path between packet-originating node s and sink b).

Dominant Source Based Tree for Dynamic Multicasting (동적 멀티캐스트를 위한 주 송신원 기탄 트리)

  • 남홍순;김대영;이규욱
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.6
    • /
    • pp.633-642
    • /
    • 2000
  • This paper proposes a dominant source-based tree (DSBT) that constructs a localized multicast routing tree for dynamic multicasting without rerouting. To constrain end-to-end delays a multicast tree needs to be reconstructed when a new node joins the group due to additive tree constraint. In DSBT, a multicast group G is expressed by a (DS, NCM) pair, where DS is a dominant source address and NCM is a normalized cost margin. A node wishing to participate in a group selects a path that complies with NCM toward DS such that the end-to-end cost is constrained without any rerouting. Simulation results show that the proposed method performed better in terms of the overall tree cost compared with the Nave algorithm and in terms of the end-to-end delays between any two members compared with the Greedy algorithm.

  • PDF

One-node and two-node hybrid coarse-mesh finite difference algorithm for efficient pin-by-pin core calculation

  • Song, Seongho;Yu, Hwanyeal;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.327-339
    • /
    • 2018
  • This article presents a new global-local hybrid coarse-mesh finite difference (HCMFD) method for efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)-based two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems with boundary conditions of incoming partial current, and they can be solved in parallel. The global problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method. We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD algorithm was also parallelized with the OpenMP parallel interface, and its numerical performances were evaluated for several benchmarks.

Layer Selective Cooperation Using Superposition Coding for Reduction of Expected Distortion (평균 왜곡 감소를 위한 중첩 부호화 기반 레이어 선택적 협력 전송)

  • Wang, Jin-Soo;Park, Jin-Bae;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.517-527
    • /
    • 2012
  • This paper considers a cooperative communication system with a single relay node, where two-layer superposition coding and successive decoding is employed to reduce the expected distortion of a Gaussian source delivered. For the system, we propose a relay scheme which forwards an appropriate relay signal at the relay node, based on the local decoding result of layers and the decoding result of layers at the destination node fed back to the relay node. In the scheme, the relay signal is designed not only by applying decode-and-forward but also by applying amplify-and-forward to reduce the outage probability in final decoding of each layer. The performance of the proposed scheme is evaluated numerically in terms of the expected distortion at various relay locations using outage probabilities derived. The results show that the proposed scheme outperforms the conventional schemes in most cases of the relay location and the gain gets larger when the relay node is closer to the source node in particular.

Reliable Transmission Using Intermediate Relay Node-based Transmission for Reliability in Sensor Network (센서 네트워크의 고 신뢰성을 위한 중계 노드 기반 전송)

  • Lee Bo-Hyung;Yoon Hyung-Wook;Park Jongho;Chung Min Young;Lee Tea-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.850-857
    • /
    • 2005
  • Sensor networks consist of sensor nodes with small size, low cost, lowpower consumption, and multi-functions to sense, to process and to communicate. The main issue in sensor networks has been focused on minimizing power consumption of sensors to maximize network life time. In some critical applications, however, the most important issue is to transmitsensing information to the end user (the sink node) with reliability. Reliable information forwarding using multiple paths in sensor networks (ReinForM) has been proposed to achieve desired reliability in the error-prone channel, but it needs increasing transmission riverhead as the channel error rate becomes high and the number of hops between the source node and the sink node increases. In this paper, we propose a reliable transmission rnechanissmusing intermediate source nodes in sensor networks (ReTrust) to reduce packet overhead while keeping the desired reliability. ReTrust has beenshown to provide desired reliability and reduced overhead via simulationsand analysis.

The QoS support using DSR protocol In Mobile Ad-hoc Network (이동 애드혹 네트워크에서 DSR 프로토콜을 이용한 QoS 지원)

  • Park, Gyong-Bae;Kang, Kyoeng-In;Oh, Se-Duck
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.63-71
    • /
    • 2003
  • In this paper, we propose an DSR(Dynamic Source Routing) protocol to support QoS for reliable data transmission in the mobile ad-hoc network. The proposed algorithm uses DSR protocol to support QoS as its basic routing protocol, and uses the nodes which are between source and destination nodes as key QoS support. Because of moving nodes there is some problem that is restricted reliable data transmission. For solve this problem, source node set up the QoS link with destination node. The nodes that are located at QoS link and find out loss of transmission path save the transmitting data packets. Those search a new transmission path to destination node and transmit the saved data packet to destination node. As the result of evaluation, we found the proposed QoS network guaranteed reliable data transmission with almost 100% data reception rate for slowly moving mobile ad-hoc network and with more 96% data reception rate, which is improvement of 3.7737% reception rate compared with none QoS network, for continuously fast moving mobile ad-hoc network.

  • PDF

Application of the Hamiltonian circuit Latin square to a Parallel Routing Algorithm on Generalized Recursive Circulant Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1083-1090
    • /
    • 2015
  • A generalized recursive circulant network(GR) is widely used in the design and implementation of local area networks and parallel processing architectures. In this paper, we investigate the routing of a message on this network, that is a key to the performance of this network. We would like to transmit maximum number of packets from a source node to a destination node simultaneously along paths on this network, where the ith packet traverses along the ith path. In order for all packets to arrive at the destination node securely, the ith path must be node-disjoint from all other paths. For construction of these paths, employing the Hamiltonian Circuit Latin Square(HCLS), a special class of (n x n) matrices, we present O(n2) parallel routing algorithm on generalized recursive circulant networks.