• Title/Summary/Keyword: Source Generation

Search Result 1,729, Processing Time 0.025 seconds

Development of a System Dynamics Model for the Electric Power Generation Mix Forecasting in the Competitive Electricity Market (전원구성비율 예측을 위한 System Dynamics모형 개발)

  • 홍정석;곽상만;나기룡;박문희;최기련
    • Korean System Dynamics Review
    • /
    • v.4 no.1
    • /
    • pp.33-53
    • /
    • 2003
  • How to maintain the optimal electric power generation mix is one of the important problems in electric power industry. The objective of this study is to develop a computer model which can be used to forecast the investment in power generation unit by the plant owners after restructuring of electric power industry. Restructuring of electric power industry will make difference in decision making process of investment in power generation unit. After Privatiazation of Power Industry, Gencos will think that profit is the most important factor among all others attracting the investment in the industry. Coal power generation is better than LNG CCGT in terms of profit. However, many studies show that LNG CCGT will be main electric power generation source because the rest of factors other than profit in LNG CCGT are superior than Coal power generation. Because the nst of factors other than profit in LNG CCGT are superior than Coal power generation. The impacts of the various government policies can be analyzed using the computer model, thus the government can formulate effective policies for achieving the desired electric power generation mix.

  • PDF

Modeling of Hydrocarbon Generation and Expulsion in the Tyee Basin, Oregon Coast Range, USA (미국 북서부 오레곤주 타이분지 내 탄화수소 생성과 배출에 대한 모델링 연구)

  • Jang, Hee-Jeong;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.55-72
    • /
    • 2009
  • The timing of hydrocarbon generation and expulsion from source rocks can be evaluated by reconstructing the geohistory of the basin using petroleum system modeling. The Tyee basin is generally considered having a high hydrocarbon generation potential For the southern part of the basin, the basin evolution from a structural and stratigraphic points of view, the thermal history, and the burial history were reconstructed and simulated using numerical tools of basin modeling. An evaluation of organic geochemistry for the potential source rocks and the possible petroleum systems were analysed to improve the understanding of the hydrocarbon charge of the basin. Organic geochemical data indicate that the undifferentiated Umpqua Group, mudstones of the Klamath Mountains, and coals and carbonaceous mudstones in the Remote Member and the Coquille River Member are the most potential gas-prone source rocks in the basin. The relatively high maturity of the southern Tyee basin is related to deep burial resulting from loading by the Coos bay strata. And the heating by intrusion from the western Cascade arc also affects to the high maturity of the basin. The maturation of source rocks, the hydrocarbon generation and expulsion were evaluated by means of basin modeling. The modeling results reveal that the hydrocarbon was generated in all potential source rocks and an expulsion only occurred from the Remote Member.

A Study on Forecast of Electric Power Generation Mix in the Competitive Electricity Market (전력산업 구조개편 이후 전원구성비율 예측에 관한 연구)

  • Hong, Jung-Suk;Kwak, Sang-Man;Park, Moon-Hee;Choi, Ki-Ryun
    • IE interfaces
    • /
    • v.17 no.3
    • /
    • pp.269-281
    • /
    • 2004
  • How to maintain the optimal electric power generation mix is one of the important problems in electric power industry. The objective of this study is to develop a computer model which can be used to forecast the investment in power generation unit by the plant owners after restructuring of electric power industry. Restructuring of electric power industry will make difference in decision making process of investment in power generation unit. After Privatiazation of Power Industry, Gencos will think that profit is the most important factor among all others attracting the investment in the industry. Coal power generation is better than LNG CCGT in terms of profit. However, many studies show that LNG CCGT will be main electric power generation source because the rest of factors other than profit in LNG CCGT are superior than Coal power generation. The impacts of the various government policies can be analyzed using the computer model, thus the government can formulate effective policies for achieving the desired electric power generation mix.

Dynamic Model of Microturbine Generation System for Stand-Alone Mode Operation (마이크로터빈발전시스템 독립운전을 위한 동적 모델링)

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.210-216
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market. In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for stand-alone operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in stand-alone operation mode of a DG system.

Characteristics of Photovoltaic Power Generation by Concentration and Tracking (집광추적형 PV발전의 특성에 관한 연구)

  • Kim, B.R.;Park, S.G.;Oh, H.G.;Yu, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.39-40
    • /
    • 2005
  • Photovoltaic Power Generation system occupies an important position as an alternative energy source, converting directly sunlight into electricity,using a photovoltaic cell. The Purpose of this research is to present and confirm the effectiveness of concentration and tracking of sun in photovoltaic power generation. Comparative experiments were carried outwith two rating 75 watt solar modules in $25^{\circ}$ under condition of various times concentration, tracking and plain normal measuring generated voltages, currents and temperatures of back sheet of modules by internet monitoring system to find out which is best in economic sense. The experiments show that output power of concentration and tracking photovoltaic power generation is over 180% more then that of plain normal system.

  • PDF

Analysis of Falling-film Generator in Ammonia-water Absorption System (암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석)

  • 김병주;손병후;구기갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF

Development of a Code Generation Support System in Integrated Development Environment of an Educational Compiler

  • Kwon, Jung-Hoon;Bae, Jong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.159-166
    • /
    • 2016
  • Compiler course is one of the important courses in computer science. It requires more efficient learning environment because of its large coverage scale and complexity. One of its solutions is to provide the integrated development environment for educational compilers which is enable to give practice-oriented class and enhance student's interest. This paper presents the code generation support system developed in an integrated development environment of educational compiler. Our system helps students to understand the process of code generation and visualizes the relation among the source language, AST, and the target language. It makes students develop their own compilers more easily.

Biofuel: Current Status in Production and Research

  • Yu, Ju-Kyung;Park, Soon Ki
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • Finding alternative and renewable energy sources has become an important goal for plant scientists, especially with the demand for energy increasing worldwide and the supply of fossil fuel being depleted. The most important biofuel to date is bioethanol which is produced from sugars (sucrose and starch) found in corn and sugarcane. Second generation bioethanol is targeting studies that would allow the use of the cell wall (lignocellulose) as a source of carbon by non-food plants. Plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops especially, how to design crops for bioenergy production and increased biomass generation for biofuel purposes. This review focuses on: i) the current status of first generation bioenergy production, ii) the limitations of first and second generation bioenergy, and iii) ongoing research to overcome challenging issues in second generation bioenergy.

The World's Thinnest Graphene Light Source (세상에서 가장 얇은 그래핀 발광 소자)

  • Kim, Young Duck
    • Vacuum Magazine
    • /
    • v.4 no.3
    • /
    • pp.16-20
    • /
    • 2017
  • Graphene has emerged as a promising material for optoelectronic applications including as ultrafast and broadband photodetector, optical modulator, and nonlinear photonic devices. Graphene based devices have shown the feasibility of ultrafast signal processing for required for photonic integrated circuits. However, on-chip monolithic nanoscale light source has remained challenges. Graphene's high current density, thermal stability, low heat capacity and non-equilibrium of electron and lattice temperature properties suggest that graphene as promising thermal light source. Early efforts showed infrared thermal radiation from substrate supported graphene device, with temperature limited due to significant cooling to substrate. The recent demonstration of bright visible light emission from suspended graphene achieve temperature up to ~3000 K and increase efficiency by reducing the heat dissipation and electron scattering. The world's thinnest graphene light source provides a promising path for on-chip light source for optical communication and next-generation display module.

Belt Source and In-Line Manufacturing Equipment for Very Large-Size AMOLED

  • Hwang, Chang-Hun;Kim, Yong-Ki;Lee, Tae-Hee;Yu, Sin-Jae;Kim, Sung-Su;Shin, Kee-Hyun;Ju, Sung-Hoo;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.17-20
    • /
    • 2006
  • The inline manufacturing equipment using a combination of the belt source and LPS source which is innovatively designed is introduced for the large-size AMOLED. The features of the inline system include 60sec TACT time, 19 numbers of chambers, non-substrate bending and easy application to very thin TFT substrates for the $4^{th}$ - $8^{th}$ Generation AMOLEDs.