• Title/Summary/Keyword: Sour Gas Treating

Search Result 4, Processing Time 0.019 seconds

The Sour Gas Treatment and Removal Technology (사워가스 처리기술 및 제거기술)

  • Kim, Y.C.;Cho, J.D.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.171-176
    • /
    • 2016
  • Sour gas is natural gas or any other gas containing significant amounts of hydrogen sulfide ($H_2S$). Natural gas is usually considered sour gas if there are more than 5.7 milligrams of $H_2S$ per cubic meter of natural gas, which is equivalent to approximately 4 ppm by volume under standard temperature and pressure We have surveyed on the treatment and removal technology of sour gas, sour gas include a lot of hydrogen sulfide($H_2S$), Carbon dioxide($CO_2$), utane($C_4H_{10}$) and mercaptan($C_nH_{4n-1}SH$) etc. We need high technology for development for these kinds of raw gases and we should specially take care of treating and removal of theses raw gases. Therefor we are going to describe about these kinds of raw gases and about methods how to treat these kinds of gases.

Analysis of the Gas Feed Distribution at the Gas Sweetening Absorber Using CFD (CFD를 활용한 산성가스 처리공정용 흡수탑 가스분산성 향상 연구)

  • Lee, Ji Hyun;Shim, Sung-Bo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.314-320
    • /
    • 2014
  • Regarding the design of the gas sweetening absorber, the gas distribution analysis for the increase of the sour gas removal and reduction of the tower height is very important research topics. Recently, regarding the $CO_2$ capture technology which is a promising option for the reduction of the greenhouse gas (GHG), the need for the gas distribution improvement is increased as the gas treating capacity increases. In this paper, we have investigated the sour gas distribution in the absorber using CFD (Computational Fluid Dynamics) based on 10 MW post-combustion $CO_2$ capture plant installed in Boryeong power station, Korea Midland Power company. For this purpose, we suggested the three possible technology options (splash plate, spiral gas line and U-tube) for the gas distribution enhancement and compared the effect of the each cases. The result showed that the U-tube installed in the absorber increase the gas distribution about 30% compared to the base case, while the delta P increasement was about 10%. From these results, it was found that the U-tube installation is an effective technology option for the gas distribution enhancement in the gas sweetening absorber.

Study on the Welding Parameters of Steel Pipes for Higher Sulfide Stress Corrosion Cracking Resistance for Field Application

  • Baek, Kwang Ki;Lee, Ho il;Lee, Chul Hwan
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • The Sulfide Stress Corrosion Cracking (SSCC) resistance of structural steels is one of the critical concerns for the operators, material designers, and fabricators of oil-field equipment, especially treating sour gas (H2S) containing fluids. As far as its fabricators concerned, the systematic care of welding parameters should be taken to obtain comparable SSCC resistance of their weldment to that of its base material. In this respect, every different type of welding joint design for this use should be verified to be SSCC-proof with relevant test procedures. In this study, the welding parameters to secure a proper SSCC resistance of steel pipe's weldments were reviewed on the Welding Procedure Qualification Records (WPQR), which had been employed for actual fabrication of an offshore structure for oil and gas production. Based on this review, a guideline of welding parameters, such as, heat input, welding consumable for Y.S. 65 ksi class steel pipe material is proposed in terms of the NACE criteria for SSCC resistance.

Modelling and Simulation of Gas Sweetening Process Using Amines (Amines를 이용한 Gas Sweetening 공정의 모델링 및 모사)

  • Ko Minsu;Park Chan Ik;Kim Hwayong
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.7-12
    • /
    • 2003
  • A sour natural gas feed containing 1.37 and 1.70 mole percent $CO_2$ and $H_2S$ respectively is to be sweetened. Our research is to design an amine treating facility to bring the concentration of the acid gases in 100 MMSCFD of natural gas down to less than 5 ppm. The K-values for $CO_2,\;H_2S,\;H_2O$ and amine components contained in natural gas is obtained by using Kent-Eisenberg model. The new gas sweetening process designed by Ball and Veldman is modeled and optimized with the commercial simulator. Results of simulations led to further economic improvements over the present operating process.

  • PDF