• Title/Summary/Keyword: Sound waves

Search Result 271, Processing Time 0.028 seconds

Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials (흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

Customized Realtime Control of Sleep Induction Sound based on Brain Wave Data (뇌파데이터에 기반한 맞춤형 수면유도음향의 실시간제어)

  • Wi, Hyeon Seung;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.204-215
    • /
    • 2020
  • People who have sleep disorders such as insomnia take a long time to get to sleep, namely sleep latency. In order to reduce it, effective stimulations and environments to induce sleep such as ASMR or pink noise are necessary. However these have different effects and preferences for each individual. Therefore customized service and control for the sleep induction will be provide to him/her. In this paper, we proposed SIS control system which provides selectively sound control among various kinds of ASMR and pink noise according to sleep state measured from brain wave data for an individual. In order to verify the effectiveness of the system, we had conducted totally 30 experiments for 5 people, and all EEG data measured from all the people during sleep. An average of 3.7 hours was spent per experiment. In comparison experiments with and without sound control for sleep induction, the latency time was reduced by an average of 8 minutes as well as delta waves and theta waves, which appear only in deep sleep, are increased by 21%.

Nonlinear Sound Amplification and Directivity Due to Underwater Bubbles (수중 기포에 의한 비선형 음파의 증폭과 지향성)

  • 김병남;최복경;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.250-260
    • /
    • 2003
  • Since a bubble in water is a highly nonlinear acoustic scatterer, the acoustic scattered waves from underwater bubbles show highly nonlinear acoustic properties. These acoustic scattered waves can be observed at the second or higher harmonics as well as at the fundamental primary frequency of incident acoustic wave. When two primary acoustic waves of different frequencies are incident on a bubble, the acoustic scattered waves can be also observed at the sum and the difference frequencies of the primary waves. In this study, when the two primary acoustic waves were incident on a bubble screen in water, we observed that the amplitude of difference frequency wave was amplified by the bubble nonlinearity and its directivity was oriented in the propagation directions of primary waves. The directivity of scattered difference frequency wave was analyzed as a coherent scattering for virtual source by using the directivity of the primary acoustic wave.

Underwater Acoustic Characteristics and Application to Seabed Survey (해저탐사에 적용되는 음파특성)

  • Kim, Seong-Ryul;Lee, Yong-Kuk;Jung, Baek-Hun
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2006
  • The electromagnetic (light) waves have a limitation to penetrate media, ie, water and sea-bottom layers, due to high energy attenuation, but acoustic (sound) waves play as the good messenger to gather the underwater target information. Therefore, the acoustic methods are applied to almost all of ocean equipments and technology in terms of in-water and sub-bottom surveys. Generally the sound character is controlled by its frequency. In case that the sound source is low frequency, the penetration is high and the resolution is low. On the other hand, its character is reversed at the high frequency. The common character at the both of light and sound is the energy damping according to the travel distance increase.

  • PDF

Dynamic Structural Equation Models of Activity Participation and Travel Behavior using Puget Sound Transportation Panel (Puget Sound Transportation Panel을 이용한 활동참여와 통행행동의 Dynamic SEM)

  • 최연숙;정진혁
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.129-140
    • /
    • 2002
  • This paper develops a dynamic structural equation model, which captures relationships among socio-demographics, activity participation(i.e., time use) and travel behavior in consideration with time variation effects. The data used in developing the model are two waves(the year 1991 and 1992) from Puget Sound Transportation Panel (PSTP). which is surveyed in Puget Sound Region in United States. The PSTP is widely used in transportation behavior analysis and includes various information of traveler's socio-economic, travel patterns, and activity participation. In the model, we use 10 endogenous variables including activity participations and travel behaviors and 10 exogenous variables composed of time variant and invariant traveler's socio-demographic variables. The empirical model shows that strong relationships exist not only between socio-demographics and travel behavior, but between waves. We also confirm needs of panel data set to identify and understand time variation effects and travel behaviors.

Remote Sound Extraction Using Laser Doppler Interferometer (레이저 도플러 간섭계를 이용한 원거리 소리 추출)

  • Hwang, Jeong-hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.108-113
    • /
    • 2021
  • We propose and experimentally demonstrate a method of remote sound extraction using laser Doppler interferometry. The output frequency of a laser Doppler interferometer changes to be the same as the frequency of the acoustic wave from than object vibrated by the sound due to the Doppler effect. Based on this phenomenon, we measure the vibrational frequency of a remote target affected by a sound wave in real time, via laser Doppler interferometry. We track the peak frequency of the interferometer's output via appropriate signal processing, which confirms that the characteristics of the so detected wave are the same as that of the original sound source. We also confirm that the same method can retrieve the sound waves not only from remote sources of single tones, but from those of any sound.

Study on Sound Reflection Control using an Active Sound Absorber (능동흡음재를 이용한 음파반사 제어기법 연구)

  • Chang, Woo-Suk;Gweon, Dae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.806-814
    • /
    • 2009
  • This paper reviews a study about sound reflection control using an active sound absorber. An active sound absorber includes sound transmitting and receiving piezocomposite sensor layers molded by water tight epoxy, and connected with a feedback controller. The multi-layer sensors and the controller consists a closed feedback loop, whose intrinsic characteristics shows excellent impedance matching performance within specified frequency band, and consequently, minimizes reflection waves. Multilayer sound transmission model is derived based on one dimensional model, and its performance is verified with experiment using a pulse tube setup.

Shock Waves in He II induced by a Gas Dynamic Shock Wave Impingement (기체역학적 충격파의 입사에 의해 유도된 초유동헬륨중의 충격파)

  • ;H. Nagai;Y. Ueta;K. Yanaka;M. Murakami
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.23-26
    • /
    • 2002
  • Two modes of shock waves propagating in He II (superfluid helium), this is a compression and a thermal shock waves, were studied experimentally by using superconductive temperature sensors, piezo pressure transducers and Schlieren visualization method with an ultra-high-speed video camera (40,500 pictures/sec). The shock waves are induced by a gas dynamic shock wave impingement upon a He II free surface. It is found that the shock Mach number of a transmitted compression shock wave is up to 1.16, and the shock Mach number of a thermal shock wave coincides well with the second sound velocity under each compressed He II state condition. The temperature rise ratio of an induced thermal shock wave to that of an incident gas dynamic shock wave was found to be very small, as small as 0.003 at 1.80K.

  • PDF

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.