DOI QR코드

DOI QR Code

Remote Sound Extraction Using Laser Doppler Interferometer

레이저 도플러 간섭계를 이용한 원거리 소리 추출

  • Hwang, Jeong-hwan (Defense Industry Support Team, Korea Research Institute for Defense Technology Planning and Advancement)
  • 황정환 (방산지원운영팀, 방위산업기술진흥연구소)
  • Received : 2021.04.27
  • Accepted : 2021.05.18
  • Published : 2021.06.25

Abstract

We propose and experimentally demonstrate a method of remote sound extraction using laser Doppler interferometry. The output frequency of a laser Doppler interferometer changes to be the same as the frequency of the acoustic wave from than object vibrated by the sound due to the Doppler effect. Based on this phenomenon, we measure the vibrational frequency of a remote target affected by a sound wave in real time, via laser Doppler interferometry. We track the peak frequency of the interferometer's output via appropriate signal processing, which confirms that the characteristics of the so detected wave are the same as that of the original sound source. We also confirm that the same method can retrieve the sound waves not only from remote sources of single tones, but from those of any sound.

본 논문에서는 어떤 음원에 의하여 진동하는 물체로부터 그 음원의 소리를 레이저 도플러 간섭계를 이용하여 원거리에서 복원하는 방법을 고안하고 실험적으로 시연하였다. 어떤 음파에 의하여 진동하는 물체를 간섭계를 통하여 측정할 경우, 측정되는 간섭계의 주파수는 도플러 효과에 의하여 그 소리의 주파수와 동일하게 변한다. 이 현상을 이용하여 어떤 소리에 영향을 받는 대상의 진동 주파수를 레이저 도플러 간섭계를 통해 원거리에서 실시간으로 측정하고, 간섭계 출력의 최대 주파수를 추적하는 신호처리를 통하여 얻은 결과가 음원의 소리와 같은 주파수 특성을 갖는다는 것을 실험적으로 확인하였다. 또한, 각각의 단일 톤 음원뿐만 아니라 여러 가지 주파수가 혼합된 음원의 복원도 가능함을 확인하였다.

Keywords

References

  1. G. Hall, "Ultrasonic wave visualization as a teaching aid in non-destructive testing," Ultrasonics 15, 57-69 (1977). https://doi.org/10.1016/0041-624X(77)90066-X
  2. K. Mizutani, M. Yamazaki, M. Yoshioka, and K. Nagai, "Measurement of fine-particle-velocity under spatial frequency domain using a Fourier transform spectrometer," Jpn. J. Appl. Phys. 38, 3116-3119 (1999). https://doi.org/10.1143/JJAP.38.3116
  3. S. Takahashi and N. Takahashi, "Measurement of cavitation noise and bubble oscillation using acousto-optic detection scheme," Jpn. J. Appl. Phys. 35, 2958-2962 (1996). https://doi.org/10.1143/JJAP.35.2958
  4. H. Masuyama, K. Nagai, and K. Mizutani, "Quadratic-curve approximation of impulse responses to calculate radiated fields from rectangular transducers," Jpn. J. Appl. Phys. 39, 3144-3149 (2000). https://doi.org/10.1143/JJAP.39.3144
  5. O. J. Lokberg, "Sound in flight: measurement of sound fields by use of TV holography," Appl. Opt. 33, 2574-2584 (1994). https://doi.org/10.1364/AO.33.002574
  6. T. Ezure, K. Mizutani, and H. Masuyama, "Optical measurement of sound fields with diffraction-effect using MachZehnder interferometer," Jpn. J. Appl. Phys. 42, 7599-7600 (2003). https://doi.org/10.1143/JJAP.42.7599
  7. J.-H. Hwang, S. Seon, and C.-S. Park, "Position estimation of sound source using three optical Mach-Zehnder acoustic sensor array," Curr. Opt. Photon. 1, 573-578 (2017). https://doi.org/10.3807/COPP.2017.1.6.573
  8. K. Thurner, F. P. Quacquarelli, P.-F. Braun, C. D. Savio, and K. Karrai, "Fiber-based distance sensing interferometry," Appl. Opt. 54, 3051-3063 (2015). https://doi.org/10.1364/AO.54.003051