• Title/Summary/Keyword: Sound transmission loss

Search Result 314, Processing Time 0.022 seconds

Study on the Acoustic Properties of Porous Materials by Using Acoustical Transfer Matrix (전달행렬법에 의한 다공질 흡음재료의 음향특성 연구)

  • 염창훈;박철희;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.323-330
    • /
    • 1994
  • 본 연구에서는 다공질 흡음재료 중 closed cell 구조를 갖는 발포수지재료(Foamed Material)에 음(sound)이 입사할 때 발생하는 흡음현상을 보다 정확히 예측하기 위해서 다공질 흡음재료에 대한 Biot 이론에 근거한 Allard의 모델링기법[4]을 이용하여 해석 프로그램을 개발하였고, 이를 이용하여 다공질 흡음재료가 단층(single layer)일 때 이 재료의 Surface Impedance와 흡음률(Absorption Coefficient)을 예측하고, 물성치(parameters)변화에 따른 다공질 흡음재료의 흡음특성을 분석하였으며, 이 재료가 자동차 제조시 사용되는 압연강판(rolled steel piate)에 부착되었을 때의 투과손실(Transmission Loss)을 예측하였고, 또한 다공질 흡음재료는 중고주파 대역의 음에 대한 흡음특성은 좋지만 저주파 대역의 음에 대한 흡음특성은 좋지 않으므로 흡음 재료의 저주파 대역의 흡음특성을 향상시키기 위해서 2층(two layers)으로 하였을 때의 흡음특성을 분석하였다. 본 논문의 연구결과는 자동차 제조시 사용되어지는 다공질 흡음재료는 물론 산업용기계나 건축용등 여러 분야에서 사용되어지는 다공질 흡음재료의 흡음특성 분석에 응용될 수 있으리라 기대된다.

  • PDF

Comparison of Panel STLs for Ships Measured in Laboratory and Mock-up (선박용 판넬의 음향투과손실(STL)의 실험실법 측정과 Mock-up 측정값의 비교)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Cha, Sun-Il;Kim, Young-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.69-72
    • /
    • 2005
  • In this paper, FSTL(field sound transmission loss) measured in the mock-up is studied and compared to the STL measured in laboratory. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t or 50t panel is used to construct wall and ceiling inside the steel structure. Various wall panels and ceilings are tested, where the effects of U/T, sealing, panel thickness, ceilings are studied. It is shown that the effect of ceiling thickness is negligible and FSTL is lower than STL by 5-7 dB due to several flanking paths.

  • PDF

An Experimental Evaluation for Vehicle Road Noise on the Pattern Noise Prediction (자동차 타이어 패턴 소음 예측에 따른 차량 Road Noise 실험적 평가)

  • Wang, Sung-Joon;Lee, Keun-Soo;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.361-364
    • /
    • 2011
  • In this paper, This work demonstrates a experimental evaluation for vehicle road noise NVH performance from the component-level NVH measurements of Tire. The power unit noise from tire emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power train when vehicles are driven at high constant speed. Therefore tire pattern noise is affected by pattern and vehicle and transmission loss. Tire noise mechanism is generated by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, smooth asphalt, the periodicity of tread design, groove depth is important factor, which have an influence on the reduction of tire pattern noise.

  • PDF

Development of Power Flow Boundary Element Method for 3-dimensional Multi-domain Noise Analysis (3차원 다영역 공간의 소음해석을 위한 파워흐름경계요소법 개발)

  • Kim, Jong-Do;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.967-974
    • /
    • 2011
  • The direct and indirect PFBEM(power flow boundary element method) for the treatment of the 3 dimensional multi-domain problems are proposed to predict the acoustic energy density in medium to high frequency ranges. In the proposed method, the equation is derived in a matrix form by considering coupled relationships of the power flow at the interface of given domains. The proposed method can successfully obtain the analytical solutions for the problems of coupled cubes and the small-scale reverberant chamber. Then the experiment is carried out to obtain STL(sound transmission loss) by using small-scale reverberant chamber and the results are compared with analysis results.

The Tuning of Reverberation Time in ISO Type Reverberation Room (ISO Type 차음시험실의 음장튜닝 사례)

  • Kim, Kyung-Ho;Han, Hee-Kab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1198-1201
    • /
    • 2006
  • ISO 140-1 recommends installing diffusing elements in the room if there are large variations of the sound pressure level caused by strong standing wave. Also it requires that reverberation time should not be long or short. In accordance to this regulation, we adjusted the reverberation time in the range of $1{\sim}2$ sec by using 4 types of diffusing elements. This paper demonstrates how to balance the reverberation time in the range of $1{\sim}2$ sec by using several types of diffusing elements.

  • PDF

The study on tire Pattern Noise (타이어 패턴 소음에 대한 고찰)

  • Hwang, S.W.;Bang, M.J.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.340-343
    • /
    • 2006
  • As the needs of consumer on ride comforts increase and the reduction of road traffic noise tightened step by step, the power unit noise emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power-train when vehicles are driven at high speeds. Therefore, in these days, tire/pavement noise is concerned. Tire/pavement noise is affected by pavement type and vehicle???s transmission loss. Tire noise mechanism is produced by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, on smooth asphalt the periodicity of tread design, pitch sequence is important factor, which have an influence on the reduction of tire noise.

  • PDF

Prediction of the Noise Level inside Metro Electric Cars (통근형 전동차의 객실 내 소음수준예측)

  • 서승일;최문길;김국현
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • This paper deals with a method to predict the noise level inside metro electric cars running a single-line tunnel at the speed of 80km per hour using ray tracing method, a kind of ray acoustics generally used for a high-frequency and air-born noise analysis. The interior of the car including a under-frame, seats, side doors, end doors, door-pockets, side panels, end panel, a roof panel and so on is modeled. And in order to describe the noise power coming inside, artificial noise sources are designated using sound transmission loss data of each section measured from simple tests and external noise level. The noise level inside the car is calculated and its properties are investigated. The results satisfy the criteria on noise level inside the car.

  • PDF

Noise Map Modeling and Analysis of Thermal Power Plant (화력발전소의 소음지도 모델링 및 해석)

  • Kim, Won-Jin;Yun, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.605-610
    • /
    • 2013
  • This study proposes an analysis model to simulate a noise map and estimate noise distribution for a location and its surroundings of a power plant. The noise map analysis was executed by using ENPro that is a commercial program for environmental noise prediction. Experimental evaluation for the proposed analysis model was carried out by comparing the results from noise analysis and measurement at several major points of the power plant and residential areas.

  • PDF

Study on Adopting Genetic Algorithm for Design Single Expansion Chamber and Resonator Module (단순확장관과 공명기 모듈 설계를 위한 유전자 알고리즘의 적용에 관한 연구)

  • 황상문;황성호;정의봉;김봉준;정융호
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • With the increased requirement for automobile noise, a design fo mufflers with higher performances becomes more important in recent days. For a design of some mufflers, it must satisfy both minimizing back pressure and maximizing sound attenuation in broad range of frequecny. Even for a simple Helmholtz resonator, an important element in a muffler, a resonator design with accurate resonant frequency is difficult if one want to consider standing waves within the cavity. In this paper, the genetic algorithm, one of the optimization technique with high capability of global fittest solution and robust convergence, is applied to the design process of mufflers. Results show that the genetic algorithm can be successfully and efficiently used to find the fittest model for both mufflers and Helmoltz resonators.

  • PDF

A study on the acoustic performance of a silencer according to the change of properties of absorbing material (흡음재 물성치 변화에 따른 소음기 음향성능 연구)

  • Lee, Yongbeom;Yang, Haesang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.278-289
    • /
    • 2021
  • In this study, the acoustic performance of a dissipative silencer used in the ship with excellent performance compared to its size was predicted and analyzed using a numerical analysis method to reduce the pipe noise. To this end, the performance of the single expansion chamber-shaped silencer was verified using experimental and numerical analysis methods. The acoustic performance of the silencer was expressed using the Transmission Loss (TL), an indicator of its own performance, and the result was derived using the two-load method, which measured by changing the impedance at the end of the pipe. For the numerical analysis method, a general-purpose finite element analysis program was used, and the Delany-Bazley-Miki model with the flow resistivity of the sound absorbing material as an input parameter was applied. Finally, we compared the experimental and simulated results for each of the acoustic performances of the single expansion type and the dissipative silencer to confirm the consistency of the results, and predicted and analyzed the simulation results for four cases according to the properties of the sound absorbing material.