• 제목/요약/키워드: Sound simulation

검색결과 583건 처리시간 0.027초

두 개의 피스톤음원으로부터 발생된 음향유동의 유속분포 해석 (Analysis of flow speed distribution in the acoustic streaming generated by two piston sources)

  • 김정순;정지희;김무준
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.400-405
    • /
    • 2020
  • 복수의 음향유동에 의해 형성되는 유속의 분포를 해석하기 위하여 동일한 두 개의 압전진동자로 구성된 초음파 트랜스듀서에 의해 형성되는 음향유동에 대해 음원 사이의 각도에 따른 음향유동속도의 분포를 조사하였다. 거리에 따른 유체입자속도의 분포를 측정하기 위하여 물과 동일한 밀도를 갖는 표시액을 사용한 간단한 측정방법을 제안하였다. 수치해석적인 방법으로 시뮬레이션한 결과와 실험결과는 유사한 경향을 나타내었으며, 두 음원으로부터 방사된 평면파의 방사빔이 교차하는 각도에 따른 음향유동의 속도 분포의 변화를 해석할 수 있었다.

연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석 (Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate)

  • 배강열
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.

에어컨 실외기 토출그릴 형상 최적화 (A Study on the Optimization of Discharge Grille of Outdoor Unit of Air Conditioner)

  • 최석호;오세기;김현종;진근호;오시영;김병순
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.726-732
    • /
    • 2011
  • The aerodynamic and aeroacoustic performance of discharge grille of outdoor unit of air-conditioner was investigated in this study. Discharge grille is one of outdoor unit's important parts to affect the flow rate and Overall Sound Pressure Level(OSPL). New type of discharge grille was suggested based on the results of numerical simulation. To simulate the flow pattern near the propeller fan, commercial flow solver FLUENT was used. Sliding mesh method was used for rotating propeller fan and initial condition for unsteady model was calculated by Multiple Reference Frame(MRF) method. To minimize the interaction noise between fan blade wake and discharge grille, new discharge grille has radial rib which is aligned with trailing edge of fan blade. And inclined radial rib was adopted for reducing flow rate drop in discharge grille. The optimization of inclined angle of radial grille was performed experimentally.

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

대공화기 탄자비행시간 계산 기법 (A Computation Method for Time of Flight in the Anti-Aircraft Gun Fire Control System)

  • 김재훈;김의환;유석진;김성호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권11호
    • /
    • pp.361-368
    • /
    • 2015
  • 대공화기사격통제장치에서 유효사거리는 정지한 표적에 대해 충분한 파괴력을 가질 수 있도록 탄속이 음속 이상을 유지하는 거리로 정의되고 있다. 접근하는 표적은 탄과 표적 간 상대속도가 증가하므로 실질적인 교전 사거리는 위의 유효사거리보다 더욱 연장된다. 그러나 기존에 제시된 TOF 계산식은 유효사거리 내에서만 정확하고 유효사거리를 벗어나면 정확하지 못하다. 본 논문은 교전사거리를 보장할 수 있도록 유효사거리 내에서와 유효사거리 밖에서도 충분한 정확도를 가진 실시간 처리가 가능한 탄자비행시간 계산 기법을 제시한다. 시뮬레이션을 통해 30미리 대공 탄에 대한 본 논문의 유용성을 보인다.

개선된 동작 주파수 특성을 갖는 차동 전압 클램프 VCO 설계 (A Design of Differential Voltage Clamped VCO for Improved Characteristics of Operating Frequency)

  • 김두곤;오름;우영신;성만영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3181-3183
    • /
    • 2000
  • As the fact that the simple data of text and sound in early year have been changed to be high quality images and sounds. PLL(Phase-Locked Loop) system plays an important role in communication system. VCO(Voltage Controlled Oscillator) is the most important part in PLL system because it can have critical effects on operation of PLL. Recently, it has been raised the necessity of high speed and high accuracy circuit application. In this paper, a new differential voltage clamped VCO using negative-skewed path is suggested. Using a dual-delay scheme to implement the VCO, higher operation frequency and wider tuning are achieved simultaneously. The dual-delay scheme means that both the negative skewed delay paths and the normal delay paths exist in the same ring oscillator. The negative skewed delay paths decrease the unit delay time of the ring oscillator below the single inverter delay time. As a result, higher operation frequency can be obtained. The whole characteristics of VCO are simulated by using HSPICE. Simulation results show that the resulting operating frequencies are 50% higher than those obtainable from the conventional approaches.

  • PDF

Structural response of corroded RC beams: a comprehensive damage approach

  • Finozzi, Irene Barbara Nina;Berto, Luisa;Saetta, Anna
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.411-436
    • /
    • 2015
  • In this work, a comprehensive approach to model the structural behaviour of Reinforced Concrete (RC) beams subjected to reinforcement corrosion is proposed. The coupled environmental - mechanical damage model developed by some of the authors is enhanced for considering the main effects of corrosion on concrete, on composite interaction between reinforcement bars and concrete and on steel reinforcement. This approach is adopted for reproducing a set of experimental tests on RC beams with different corrosion degrees. After the simulation of the sound beams, the main parameters involved in the relationships characterizing the effects of corrosion are calibrated and tested, referring to one degraded beam. Then, in order to validate the proposed approach and to assess its ability to predict the structural response of deteriorated elements, several corroded beams are analyzed. The numerical results show a good agreement with the experimental ones: in particular, the proposed model properly predicts the structural response in terms of both failure mode and load-deflection curves, with increasing corrosion level.

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

등가소스법을 이용한 실내 음장 모델링에서의 원방 소스 최적화 연구 (A study on the Optimal Far field Source locations in the Acoustic Modelling using Equivalent Source Method)

  • 백광현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.216-221
    • /
    • 2001
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and may include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. In the ESM modelling, some of the equivalent positions are chosen to be the same as the first order images of the source inside the enclosure, some are positioned on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal equivalent source positions, the far field sources. Typically, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study, optimal far field source locations are searched using simulated annealing method and simulation results showed that optimally located sources gave better accuracy even with a smaller number of far field sources.

  • PDF

SPH 기법의 계산인자 민감도에 대한 연구 (Study on the Effects of Computational Parameters in SPH Method)

  • 김유일;남보우;김용환
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.398-407
    • /
    • 2007
  • A smoothed particle hydrodynamics (SPH) method is applied for simulating two-dimensional free-surface problems. The SPH method based on the Lagrangian formulation provides realistic flow motions with violent surface deformation, fragmentation and reunification. In this study, the effect of computational parameters in SPH simulation is explored through two-dimensional dam-breaking and sloshing problem. The parameters to be considered are the speed of sound, the frequency of density re-initialization, the number of particle and smoothing length. Through a series of numerical test. detailed information was obtained about how SPH solution can be more stabilized and improved by adjusting computational parameters. Finally, some numerical simulations for various fluid flow problem were carried out based on the parameters chosen through the sensitivity study.