• 제목/요약/키워드: Sound signal

검색결과 898건 처리시간 0.028초

시간 영역의 빔출력과 후보 신호 사이의 비교를 통한 소음원의 위치 추정 (Noise source localization using comparison between candidate signal and beamformer output in time domain)

  • 김구환;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.543-543
    • /
    • 2010
  • The objective of this research is estimating the location of interested sound source by using the similarity between a beamformer output in time domain and the candidate signal. The waveform of beamformer output at the location of sound source is similar with the waveform emitted by that source. To estimate the location of sound source by using this feature, we define quantified similarity between candidate signal and beamformer output. The candidate signal describes the signal which is generated by interested source. In this paper, similarity is defined by four methods. The two methods use time vector comparison, and the other two methods use time-frequency map or linear prediction coefficients. To figure out the results and performance of localization by using similarities, we demonstrate two conditions. The one is when two pure tone sources exist and the other condition is when several bird sounds exist. As a consequence, inner product with two time-vectors and structural similarity with spectrograms can estimate the locations of interest sound source.

  • PDF

향상된 음향 신호 기반의 음향 이벤트 분류 (Enhanced Sound Signal Based Sound-Event Classification)

  • 최용주;이종욱;박대희;정용화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.193-204
    • /
    • 2019
  • 센서 기술과 컴퓨팅 성능의 향상으로 인한 데이터의 폭증은 산업 현장의 상황을 분석하기 위한 토대가 되었으며, 이와 같은 데이터를 기반으로 현장에서 발생하는 다양한 이벤트를 탐지 및 분류하려는 시도들이 최근 증가하고 있다. 특히 음향 센서는 상대적으로 저가의 가격으로 현장 정보를 왜곡 없이 음향 신호를 수집할 수 있다는 큰 장점을 기반으로 다양한 분야에 설치되고 있다. 그러나 소리 취득 시 발생하는 잡음을 효과적으로 제어하지 못한다면 산업 현장의 이벤트를 안정적으로 분류할 수 없으며, 분류하지 못한 이벤트가 이상 상황이라면 이로 인한 피해는 막대해질 수 있다. 본 연구에서는 잡음 상황에서도 강인한 시스템을 보장하기 위하여, 딥러닝 알고리즘을 기반으로 잡음의 영향을 개선 시킨 음향 신호를 생성한 후, 해당 음향 이벤트를 분류할 수 있는 시스템을 제안한다. 특히, GAN을 기반으로 VAE 기술을 적용한 SEGAN을 활용하여 아날로그 음향 신호 자체에서 잡음이 제거된 신호를 생성하였으며, 향상된 음향 신호를 데이터 변환과정 없이 CNN 구조의 입력 데이터로 활용한 후 음향 이벤트에 대한 식별까지도 가능하도록 end-to-end 기반의 음향 이벤트 분류 시스템을 설계하였다. 산업 현장에서 취득한 음향 데이터를 활용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 99.29%(철도산업)와 97.80%(축산업)의 안정적인 분류 성능을 확인하였다.

Solution for Spatial Sound Realization in MIDI Specification

  • Cho, Sang-Jin;Ovcharenko, Alexander;Chae, Jin-Wook;Chong, Ui-Pil
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2005
  • Panning is the way in which to realize a spatial sound in MIDI by moving sound images by the loudness of each channel. However, there is a limitation for the natural spatial sound. The HRTF (Head Related Transfer Function) has been widely known as one of the ways to realize spatial sound using the two channels, but it needs much processing power. It is very hard to implement a real time processing structure. In this paper, we propose an improved 3D sound model for the spatial sound location by changing the acoustic parameters. We could get a good result from the experiment with MIDI Pan and our Model.

  • PDF

Performance Comparison Between the Envelope Peak Detection Method and the HMM Based Method for Heart Sound Segmentation

  • Jang, Hyun-Baek;Chung, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권2E호
    • /
    • pp.72-78
    • /
    • 2009
  • Heart sound segmentation into its components, S1, systole, S2 and diastole is the first step of analysis and the most important part in the automatic diagnosis of heart sounds. Conventionally, the Shannon energy envelope peak detection method has been popularly used due to its superior performance in locating S1 and S2. Recently, the HMM has been shown to be quite suitable in modeling the heart sound signal and its use in segmenting the heart sound signal has been suggested with some success. In this paper, we compared the two methods for heart sound segmentation using a common database. Experimental tests carried out on the 4 different types of heart sound signals showed that the segmentation accuracy relative to the manual segmentation was 97.4% in the HMM based method which was larger than 91.5% in the peak detection method.

Improvement of Sound Quality of Voice Transmission by Finger

  • Park, Hyungwoo
    • International Journal of Advanced Culture Technology
    • /
    • 제7권2호
    • /
    • pp.218-226
    • /
    • 2019
  • In modern society, people live in an environment with artificial or natural noise. Especially, the sound that corresponds to the artificial noise makes the noise itself and affects each other because many people live and work in the city. Sounds are generated by the activities and causes of various people, such as construction sites, aircraft, production machinery, or road traffic. These sounds are essential elements in human life and are recognized and judged by human auditory organs. Noise is a sound that you do not want to hear by subjective evaluation, and it is a loud sound that gives hearing damage or a sound that causes physical and mental harm. In this study, we introduce the method of stimulating the human hearing by finger vibration and explain the advantages of the proposed method in various kinds of a noise environment. And how to improve the sound quality to improve efficiency. In this paper, we propose a method to prevent the loss of hearing loss and the transmission of sound information based on proper signal to noise ratio when using portable IT equipment in various noise environments.

A study on the Beehive Door Opening and Closing System using a Hornet Sound Analysis

  • Kim, Joon Ho;Han, Wook;Chung, Wonki
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.393-396
    • /
    • 2022
  • Recently, rapid climate change has had a significant impact on the ecosystem of honeybees. In addition, the problem of Vespa Hornets invasion of colonies has a fatal impact on the bee ecosystem, independent of climate change. Especially in late summer. This study relates to a method for preventing Vespa Hornets attack. In this study, we developed a Vespa Hornets sound detection device was developed by collecting and analyzing the sound of a Vespa Hornets and applying IoT technology. The developed device detects the sound of a Vespa Hornets when Vespa Hornets appears around the hive of the bees and sends a signal to automatically close the door of the beehive. The device that receives the signal drives the motor that controls the honeycomb door to close the beehive door. The Vespa Hornets sound detection device operates until no Vespa Hornets sound is detected. The system developed by us is expected to be installed in the beehives of actual beekeeping farms to dramatically reduce the damage caused by by Vespa Hornets.

Signal Enhancement of a Variable Rate Vocoder with a Hybrid domain SNR Estimator

  • Park, Hyung Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.962-977
    • /
    • 2019
  • The human voice is a convenient method of information transfer between different objects such as between men, men and machine, between machines. The development of information and communication technology, the voice has been able to transfer farther than before. The way to communicate, it is to convert the voice to another form, transmit it, and then reconvert it back to sound. In such a communication process, a vocoder is a method of converting and re-converting a voice and sound. The CELP (Code-Excited Linear Prediction) type vocoder, one of the voice codecs, is adapted as a standard codec since it provides high quality sound even though its transmission speed is relatively low. The EVRC (Enhanced Variable Rate CODEC) and QCELP (Qualcomm Code-Excited Linear Prediction), variable bit rate vocoders, are used for mobile phones in 3G environment. For the real-time implementation of a vocoder, the reduction of sound quality is a typical problem. To improve the sound quality, that is important to know the size and shape of noise. In the existing sound quality improvement method, the voice activated is detected or used, or statistical methods are used by the large mount of data. However, there is a disadvantage in that no noise can be detected, when there is a continuous signal or when a change in noise is large.This paper focused on finding a better way to decrease the reduction of sound quality in lower bit transmission environments. Based on simulation results, this study proposed a preprocessor application that estimates the SNR (Signal to Noise Ratio) using the spectral SNR estimation method. The SNR estimation method adopted the IMBE (Improved Multi-Band Excitation) instead of using the SNR, which is a continuous speech signal. Finally, this application improves the quality of the vocoder by enhancing sound quality adaptively.

주행 중 철도 차량의 결함 위치 추정 방법 (Fault localization method of a train in cruise)

  • 전종훈;김양한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.903-912
    • /
    • 2007
  • Faults of rotating parts of a train normally generate unexpected frequency band or impulsive sound[1] which has a period when it moves with a constant speed. The former can be detected by the moving frame acoustic holography method, which visualizes sound field that is generated by a moving and emitting pure tone or band limited noise source. We have attempted to apply the method to the latter case: the periodic impulsive sound which generate different signal compared with what can be measured by the band limited noise. The signal to noise ratio which determines the success of early fault detection must also be studied with the impulsive and moving signal. This research shows how the problems related with these issues can be resolved. The main idea is that periodic impulsive signal can be expressed by infinite set of discrete pure tones. This enables us to obtain lots of holograms that visualize periodic impulsive sound field including noise by using the moving frame acoustic holography method. Therefore holograms can be averaged to improve the signal to noise ratio until having reliable information that exhibits where the impulsive sources are. Theory and experiment by using the miniature vehicle are described [Work supported by BK21 & KRRI].

  • PDF

An advertisement method using inaudible sound of speaker

  • Chung, Myoungbeom
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권8호
    • /
    • pp.7-13
    • /
    • 2015
  • Recently, there are serviced user customized advertisement of various type using smart device. Representative services are advertisement service using light of smart TV screen or audible sound of smart TV to transmit advertisement information. However, those services have to do a specific action of smart device user for advertisement information or need audible audio information of TV contents. To overcome those weakness, therefore, we propose an advertisement method using inaudible sound of speaker based on smart device. This method supports the transfer of advertising content to the smart device user with no additional action or TV audio signal required to access that content. The proposed method used two high frequencies among 18kHz ~ 22kHz of audible frequency range which smart TV can send out. And it generates those frequencies synthesized with audio of TV contents as trigger signal which can send advertisements to smart device. Next, smart device analysis the trigger signal and request advertisement contents related to the signal to server. After then, smart device can show the downloaded contents to user. Because the proposed method uses the high frequencies of sound signals via the inner speaker of the smart device, its main advantage is that it does not affect the audio signal of TV content. To evaluate the efficacy of the proposed method, we developed an application to implement it and subsequently carried out an advertisement transmission experiment. The success rate of the transmission experiment was approximately 97%. Based on this result, we believe the proposed method will be a useful technique in introducing a customized user advertising service.

웨이블릿을 이용한 입체음향의 확산감 제어 (3D Sound Diffusion Control Using Wavelets)

  • 김익형;정의필
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.23-29
    • /
    • 2003
  • 본 논문에서는 무향실에서 녹음된 모노 음으로부터 효과적인 음의 확산감을 얻기 위해서 스테레오 헤드폰을 이용한 개선된 입체음향 시스템의 구현을 위한 알고리듬을 제안하고자 한다. 머리전달함수(HRTF)를 이용해서 음상을 정위하고 음의 확산 효과를 위해서 시간 지연을 삽입한 웨이블릿 필터 뱅크를 이용한다. 좌$.$우 머리전달함수의 샘플링률을 변화시키면서 음상 정위의 왜곡 정도를 파악한다. 계산의 복잡도를 고려하여 공간상의 정보를 잃지 않는 가장 낮은 샘플링률을 갖는 머리전달함수와 실험 음원과의 컨벌루션 처리를 통해서 2 채널의 스테레오 음을 획득한다. 헤드폰의 좌$.$우측 신호에 대한 상관계수 값의 제어를 통해서 음의 확산 정도를 비교한다. 잔향처리를 통하여 최종적인 확산 음원을 획득한다.

  • PDF