• Title/Summary/Keyword: Sound scattering layer

Search Result 10, Processing Time 0.022 seconds

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

Distribution of the Deep Scattering Layer around Uljin Coastal Area (울진 연안의 음향 산란층 분포)

  • HWANG Doo Jin;KIM Dong Eon;JEONG Sun Beom;SON Yong Uk;CHAE Jin Ho;CHO Ki Ryang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.205-213
    • /
    • 2005
  • A hydroacoustic and a close-open-close zooplankton net survey were conducted to understand the distribution characteristics of the deep scattering layer (DSL) and to estimate the density of zooplankton in the DSL, in the Uljin coastal area. The survey was carried out during March 13-14 and June 4-5, 2003 at each station for zooplankton. The vertical migration mechanisms of zooplankton are very variable to the taxa. In this study, after we grasp the vertical migration of zooplankton through the results of an echo-sounder survey, we verified the mechanisms of their vertical migration in the Uljin coastal area. Also, to estimate effectively the biomass of zooplankton, we researched the acoustic scattering strength according to the species. On the basis of these results, we devised a method for estimating zooplankton biomass through comparing net and echo-soundings. We obtained the results as a follows; 1) According to the examination of collections from the net sampling, in March, 2003, Euphausia pacifica comprised $38\%$ of zooplanktons inhabiting the sound scattering layer, while copepods, chaetognaths, and amphipods accounted for $29\%,\;23\%\;and\;10\%$, respectively. And in June, 2003, the ratio of E. pacifica was $51\%$, copepods $43\%$, and the others comprised $6\%$. In both March and June E. pacifica showed dominance among the species of zooplankton. 2) The analysis of vertical distribution through acoustic data in the scattering layer was more apparent in June (spring/summer) of 2003, than in March (winter/spring) of that year. The vertical migration of zooplankton peaked around sunrise and sunset in both March and June. 3) As for the sound scattering layer, it distributed in the open sea in March, and in the inland sea in June. Therefore it is suggested that some zooplankton species such as E. pacifica performed ontogenic horizontal migration througth the spring and early summer.

Density Estimation of an Euphauiid (Euphausia pacifica) in the Sound Scattering Layer of the East China Sea (동중국해 음향 산란층내의 euphausiid (Euphausia pacifica) 밀도 추정)

  • KANG Donhyug;HWANG Doojin;SOH Hoyoung;YOON Yangho;SUH Haelip;KIM Yongju;SHIN Hyunchul;IIDA Kohji
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.749-756
    • /
    • 2003
  • Hydroacoustic and open-closing zooplankton net survey were conducted to understand the characteristics of the sound scattering layer (SSL) and to estimate the density of an euphausiid (Euphausia pacifica) in the SSL, in the northwestern part of the East China Sea. The survey was carried out during July 6-9 2002 at 8 sampling stations for zooplankton. The virtual echogram technique was used to identify E. pacifica from all acoustic scatters. Mean volume backscattering strength difference $(MVBS_{120kHz-38kHz})$ and target strength equation for E. pacifica were derived from the Distorted-wave Born Approximation (DWBA) model. Although vertical migration of the SSL is similar to the general pattern, dispersion at night shows some differences. Estimated mean density using acoustic data ranged from $20.4-221.4\;mg/m^3$ over the whole depth, and $87.1-553.5\;mg/m^3$ in the SSL. The density using the zooplankton net ranged from $0.2-362.4\;mg/m^3$ and was not related to net deploying method. The results from the acoustic and net survey suggest that E. pacifica might be an important zooplankton community in the northwestern part of the East China Sea.

Acoustic Identification of Inner Materials in a Single-layer Cylindrical Shell with Resonance Scattering Theory (공명 산란 이론을 이용한 단일층 원통형 껍질 내부 물질의 음향 식별)

  • Jo, Young-Tae;Kim, Wan-Gu;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2015
  • Acoustic identification of inner materials in a single-layer cylindrical shell is investigated with acoustic resonance theory. The theoretical resonance peak frequencies for a cylindrical shell are little affected by the density variation, but remarkably changed by the sound speed variation of inner materials. Such acoustic dependency can be utilized to identify inner materials in a cylindrical shell. Acoustic resonance spectrogram for a single-layer cylindrical shell is theoretically plotted as functions of normalized frequency and sound speed of inner materials. The inner materials can be acoustically identified by overlapping acoustic resonance peaks from measured backscattering sound field on the spectrogram. To experimentally confirm this method, backscattering sound field of cylindrical shell filled with water, oil or ethylene glycol was measured in water tank. The inner materials could be identified by acoustic resonance peaks of the backscattering sound field monostatically measured with a transduce of 1.05 MHz center frequency.

On the reflected signal processing of Digital Sonar using the AMDF (AMDF를 이용한 Digital Sonar 의 반사신호처리에 관한 연구)

  • 홍우영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.91-95
    • /
    • 1984
  • Because of layer and scattering in the ocean, there are some problem in algorithm currently used for the recognition of targets. Those are time delay of processing and circuit design. The simple method of detecting direct sound wave in noise caused by time delay is proposed-recognized, estimated, and then direcxt sound wave is reconstructed by the AMDF and $\mu$-processor. 2KHz, 4KHz, 8KHz, 12KHz, 16KHz sound waves are used in experiment. To obtain a reference signal, anechoic water tank is used is processing and aluminium water tank used instead of real ocean. As a result, there are a few errors which caused by anechoic water tank error, decreasing of frequency make errors. Possibility of application to Sonar Signal Processing is proved.

  • PDF

Acoustical backscattering strength characteristics and density estimates of Japanese common squid distributed in Yellow Sea (황해에 분포하는 살오징어의 음향산란강도 특성 및 분포밀도 추정)

  • Lee, Kyoung-Hoon;Choi, Jung-Hwa;Shin, Jong-Keun;Chang, Dae-Soo;Park, Seong-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.157-164
    • /
    • 2009
  • Due to change of various marine environments according to seawater temperature rising, Japanese common squid(Todarodes pacificus), which was distributed in East Sea, was recently caught in Yellow Sea during a summer season from 2006. The fishery resources density research was carried out in Korea-China Provisional Water Zone using trawl fishing gear and acoustics in National Fisheries Research & Development Institute in Korea. This paper showed the analysis on the acoustical backscattering strength by two frequencies(38kHz, 120kHz) for Japanese common squid by acoustical scattering theoretical model based on size distribution for survey period, and estimate the density distribution for squid s integrated layer which was extracted from any scatterers distributed in water column using two frequency difference method which has been used to distinguish fish shoals or specific target scatterers from sound scattering layer which is composed of various zooplankton. Furthermore, the entire range of their density estimation was suggested using by Monte Carlo simulation under considering each uncertainty such as size distributions or swimming angle and so on in survey area.

Mid Frequency Band Reverberation Model Development Using Ray Theory and Comparison with Experimental Data (음선 기반 중주파수 대역 잔향음 모델 개발 및 실측 데이터 비교)

  • Chu, Young-Min;Seong, Woo-Jae;Yang, In-Sik;Oh, Won-Tchon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.740-754
    • /
    • 2009
  • Sound in the ocean is scattered by inhomogeneities of many different kinds, such as the sea surface, the sea bottom, or the randomly distributed bubble layer and school of fish. The total sum of the scattered signals from these scatterers is called reverberation. In order to simulate the reverberation signal precisely, combination of a propagation model with proper scattering models, corresponding to each scattering mechanism, is required. In this article, we develop a reverberation model based on the ray theory easily combined with the existing scattering models. Developed reverberation model uses (1) Chapman-Harris empirical formula and APL-UW model/SSA model for the sea surface scattering. For the sea bottom scattering, it uses (2) Lambert's law and APL-UW model/SSA model. To verify our developed reverberation model, we compare our results with those in Ellis' article and 2006 reverberation workshop. This verified reverberation model SNURM is used to simulate reverberation signal for the neighboring seas of South Korea at mid frequency and the results from model are compared with experimental data in time domain. Through comparison between experiment data and model results, the features of reverberation signal dependent on environment of each sea is investigated and this analysis leads us to select an appropriate scattering function for each area of interest.

Comparison of Echogram Analysis Methods for Evaluating the Sound-scattering Layer (음향산란층의 식별을 위한 에코그램 분석 방법의 비교)

  • Choi, Seok-Gwan;Yoon, Eun-A;Han, Inwoo;Oh, Wooseok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.856-861
    • /
    • 2016
  • This study compared the density of fish determined using three different echogram methods: the frequency-difference, time variable, and threshold modification methods. An acoustic survey was conducted off the coast of Jeju Island after sunset. Data at 38 and 120 kHz frequencies were collected using a commercial fishing vessel. As a reference point, the value of ${\Delta}MVBS_{120-38kHz}$ that distinguished fish from zooplankton using the 38 and 120 kHz frequencies was set at < 2 dB. The estimated density of fish along the survey line was 0.1-30.4, 0.1-64.3, and $0.1-51.7m^2/nmi^2$ using the frequency difference, time variable threshold, and threshold modification methods, respectively. The results of this study constitute basic research for estimating fish densities.

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys (이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가)

  • Lee, Seong-Hee;Kang, Chang-Seog
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.893-899
    • /
    • 2011
  • Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

5-MHz Volume Backscattering Strength Measurements from Suspended Sediment Concentrations (5 MHz 신호를 이용한 부유물의 농도에 따른 후방산란강도 측정)

  • Lee, Changil;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • The erosion, suspension, and transport of sediment frequently occur in the coastal waters and estuarine. These processes often generate the so-called fluid mud layer, which is defined as a high-concentration aqueous suspension of fine grained sediment (> 10 g/l), consisting mainly of silt and clay-size particles. Therefore the high-resolution ultrasound is mostly used to detect or monitor the fluid mud layer. Because the sound attenuation tends to increase rapidly with the suspended sediment concentration, it is necessary to consider the accurate attenuation correction to estimate the backscattering strengths from the suspended sediment layers. In this paper, the volume backscattering strengths with various suspended sediment concentrations were measured using 5-MHz ultrasound signal in a small-scale water tank. The sound attenuation due to the viscosity and scattering from suspended sediment particles was predicted by the Richard's model and applied to the sonar equation to estimate the volume backscattering strengths from the suspended sediment concentrations. For the case that the additional attenuation was not considered, the volume backscattering strengths increased to the concentration of 20 g/l, and over this point, the backscattering strengths were roughly constant. However, for the case that the attenuation due to the suspended sediment concentration was considered, the backscattering strengths increased with the concentration.