• Title/Summary/Keyword: Sound roof tunnel

Search Result 4, Processing Time 0.02 seconds

A Study on the Evaluation of the Daylighting Performance in the Sound Barrier Tunnel (축소모형을 이용한 방음터널의 자연채광 성능평가에 관한 연구)

  • Kim, Oim-Gon;Choi, Jeong-Min;Park, Chang-Seob;Lee, Kyung-Hee
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • This study aims to evaluate the natural lighting performance in the sound barrier tunnel. Therefore, to evaluate the daylighting performance, the combinations of 3 tunnel roof types which are flat-roof-type(type A), slope-roof-type(type B), arch-roof-type(type C) and 3 window types which are side-window-type(type 1), one-window-roof type(type 2), two-window-roof type(type 3) are evaluated by experimenting small scaled models. In this 9 cases of experiment, illuminance levels of each case are analyzed and evaluated. The conclusion of this study is that slope-roof-type(B) and arch-roof-type(C) is preferable to flat-roof-type(A) and one-window-roof-type(B) and two-window-roof-type(C) is preferable to side-window-type(A) for daylighting in the sound barrier tunnel.

The Study on the Improvement of Ventilation Performance in the Soundproof Tunnel (방음터널의 자연환기성능 향상에 대한 연구)

  • Lee Kyung-Hee;Cho Sung-Woo;Choi Jeong-Min;Kim Kyung-hwan;Park Chang-Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.922-929
    • /
    • 2005
  • This paper compared ventilation performance between the sound roof tunnel with flat roof and the sound roof tunnel with gable roof. The ventilation rate of the sound roof tunnel is calculated by natural ventilation rate plus ventilation by vehicle. The roof type is divided by the shape of the roof and the ventilator location on the roof. The results between calculation and CFD on the ventilation rate are almost alike. The ventilation rate on the flat roof is $558.4\;m^3/s$ with mid-ventilator and $496.8\;m^3/s$ with left-right ventilator. The ventilation rate on the gable roof is $653.2\;m^3/s$ with mid-ventilator and $611.6\;m^3/s$ with left-right ventilator. The ventilation rate of soundproof with gable roof is higher than that with flat roof. The ventilation rate and with mid-ventilator is higher than that with left-right ventilator the soundproof roof. Therefore, the ventilation performance of soundproof roof depends on the roof shape and ventilator location on the roof.

Prediction of the Noise Level inside Metro Electric Cars (통근형 전동차의 객실 내 소음수준예측)

  • 서승일;최문길;김국현
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • This paper deals with a method to predict the noise level inside metro electric cars running a single-line tunnel at the speed of 80km per hour using ray tracing method, a kind of ray acoustics generally used for a high-frequency and air-born noise analysis. The interior of the car including a under-frame, seats, side doors, end doors, door-pockets, side panels, end panel, a roof panel and so on is modeled. And in order to describe the noise power coming inside, artificial noise sources are designated using sound transmission loss data of each section measured from simple tests and external noise level. The noise level inside the car is calculated and its properties are investigated. The results satisfy the criteria on noise level inside the car.

  • PDF

Noise Protection Roof: Partial Opening Effect for Noise Reduction (철도용 터널형 방음벽 개발연구: 설계 방향)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.522-532
    • /
    • 2015
  • In the present study, a tunnel type soundproof wall with partial opening is proposed to reduce the environmental noise caused by railway vehicles traveling on bridges, which affects residents of high-rise apartment buildings; the study also attempts to minimize load due to wind and the weight of the wall. Applying the principles of computational fluid dynamics and structural mechanics, and the ray tracing method, a reduction in noise as well as of the overall weight of the soundproof walls is estimated. Analysis results show that the proposed soundproof wall with a partial opening weighs less, while reducing the wind loading by up to 30%. To prevent direct propagation of sound through openings in the wall, an acoustic louver, which is a type of silencer, could be considered for the opening. In order to achieve a similar noise effect with existing insulation material, the fluid flow and the insulation effect of the acoustic louver are analyzed. As the considered opening is in the range of 30~40% of the total length of the soundproof wall, the noise effect and wind load are reduced by 10dB and 25% respectively. Consequently, opening some part of tunnel type soundproof walls and installing louvers on the wall openings can have the effects of weight-reduction and reduced wind load. If a partial opening is applied with proper sound material application, a gain of an additional 5~10dB of noise reduction can be achieved.