• Title/Summary/Keyword: Sound pressure Level

Search Result 690, Processing Time 0.034 seconds

Deviation of sound pressure level in receiving room according to the heavy-weight floor impact sources and it's positions (중량 바닥충격음 충격원의 종류 및 위치에 따른 수음실 음압레벨 변화)

  • Ju, Mun Ki;Han, Myung Ho;Oh, Yang Ki
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.23-28
    • /
    • 2009
  • Standard sound source currently used in heavy-weight floor impact sounds that cause many social problems has excessive low-frequency energy within a range from 63 Hz to 125 Hz, and is difficult to evaluate and measure. To solve these problems, studies are widely performed using a new impact source, the impact ball. In this study, the sound fields in a receiving room were compared and analyzed according to the current impact source, the bang machine, and the impact ball. And deviation of sound pressure level according to the impact source positions were compared. In case of impact ball, the sound pressure level was lower at 63 Hz and below and higher at 125 Hz and above. The same trend was observed at the low-frequency range on the horizontal and vertical planes, regardless of the type of the impact source, which showed the influence of the room mode. There was a problem with the variations in the sound pressure level according to the size or shape of the receiving room. And it also shows that change of source positions may effect the single number rating scheme.

Jet-Edge Interaction and Sound Radiation in Edgetones (쐐기소리에서 분류-쐐기의 상호작용과 소리의 방사)

  • ;Powell A.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.584-590
    • /
    • 1994
  • A theoretical model has been developed to analyze the jet-edge interaction and the sound radiation. The edge responding to the sinuous impinging jet is regarded as an array of dipoles and their strength is determined by the boundary condition on the edge surface. The surface pressure distribution and the edgeforce are estimated using these dipoles. Then the pressure amplitude and directivity of the sound field is obtained by summing the radiating sounds from the dipole sources. It is found that the effective source is located a little distance downstream from the edge tip. And the directivity of the sound radiation is cardioid pattern near the edge but dipole pattern far from the edge. The theoretical model is confirmed by comparing the theoretical prediction of the edgeforce and sound pressure level with available experimental data.

Relation between sound pressure level and auditory distance perception in anechoic room (무향실에 있어서의 음압레벨과 거리정위와의 관계)

  • Kim, Hae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1201-1206
    • /
    • 2009
  • According to a lot of investigations, distance perception is influenced by many important cues such as sound pressure level, reflections from the room surface, binaural difference (ITD and ILD), a kind of sound source, and head related transfer functions (HRTF). Two psychoacoustical experiments on auditory distance perception were conducted to examine the effectiveness of the sound pressure level loudness as one of the physical cues in the auditory distance perception under a constant loudspeaker's output level and a constant sound level at the subject's position in the absence of reflections in an anechoic room. Our experimental results showed that the perceived distance of sound image is closer than actual sound source distance with the constant loudspeaker's output level and the constant sound level. Futhermore, the perceived distance of a sound image with constant sound level increased when the actual distance increases up to approximately 2 m while the perceived distance saturated when the sound source distance exceed 2 m. On the other hand, when the condition of loudspeaker's output level was kept constantly, the perceived distance of sound image increased up to around 3m, longer than the conditions of constant sound level at the subject's position. We found that the change in the loudness as a function of distance plays an important role in the auditory distance perception in the absence of reflections..

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I) (청력보호를 위한 선박 기관실 및 선실소음의 조사(I))

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Booming Index Development of Interior Sound Quality on a Passenger Car Using Artificial Neural Network (신경망회로를 이용한 부밍음질의 인덱스 개발에 관한 연구)

  • 이상권;채희창;박동철;정승균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.445-451
    • /
    • 2003
  • Booming sound is one of the most important interior sound of a passenger car. The conventional booming noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level cannot give the whole story about the booming sound of a passenger car. In this paper, we employed sound metrics, which are the subjective parameters, used in psycoacoustics. According to recent research results. the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network theory has been applied to derivation of sound quality index for booming sound of a passenger car.

Allowable sound pressure levels of ceiling mounted air-conditioning sounds (천장형 에어컨 소음의 허용 음압레벨 도출)

  • You, Jin;Jeong, Choong-Il;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.689-692
    • /
    • 2008
  • Noises from ceiling mounted air-conditioning units were recorded in various actual situations such as offices, classrooms and libraries. Eight specimens of air-conditioners from major domestic and foreign manufacturers' were investigated in this study. A head and torso simulator was located 1.5 m beneath the air-conditioner panel for the measurements and sound pressure levels of the recording sounds were varied from 28 to 55 dBA with 3 dB steps for subjective evaluations. A total of 88 stimuli was randomly presented to subjects using a headphone system in semi-anechoic chamber. Two-categorized (noisiness and amenity) nine-point scale was used as evaluation method. The third scale ('point 3') among the nine-point scale was set as the threshold of allowable level of the air-conditioning sounds in consideration of the real situations. The results indicate that the allowable sound pressure level is around 34 dBA for both noisiness and amenity categories.

  • PDF

The Response of Fishes to Sound Stimulus (음자극에 대한 어류의 반응행동)

  • KIM Dong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.266-270
    • /
    • 1985
  • In order to obtain the fishing possibility by acoustic, the two fishes, Lateolabrax japonicus, Mugil cephalus, were bred in a water tank. The feeding sounds from the fishes and the artificial sounds were recorded by a hydrophone and then the frequency and the sound pressure level of the sounds recorded were analyzed by the digital frequency analyzer. These sounds were edited in two manners of which one is emitted for 10 seconds and paused for 10 seconds continuously and the other is emitted for 20 seconds and paused for 20 seconds also. These edited sounds were emitted again into the tank and the respose of fisher were observed. Lateolebrax japonicus showed a positive response and Mugil cephalus responsed a little positively to the emitted feeding sound, The fishes seemed to show a positive response only in emitting a moderate pressure level of feeding sound. Lateolabrax japonicus and Mugil cephalus showed negative response to the emitted artificial sound. It was most effective to increase the sound pressure level that the fishes went away from the sound source to the emitted artificial sound.

  • PDF