• Title/Summary/Keyword: Sound intensity Level

Search Result 77, Processing Time 0.021 seconds

Annoyance and sportiness perception of the acceleration sound by the driver and passengers (가속 사운드에 대한 운전자와 탑승객의 성가심과 스포티함 지각)

  • Kim, Seonghyeon;Altinsoy, M. Ercan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.566-570
    • /
    • 2021
  • This study presents a perceptual difference in acceleration sounds of a sporty sedan between the driver and passenger. We found a significant difference in annoyance and sportiness perception according to the acceleration sound level through subjective evaluations. The multimodal reproduction system, which can reproduce the driving image, motion, vibration, and sound, was applied for the test. A subjective experiment was conducted to evaluate the perceived intensity of annoyance and sportiness by varying the acceleration sound level in five steps of 3 dB. The experimental results showed that the driver perceives the acceleration sound less annoying than the passenger at a relatively low sound level. Meanwhile, the driver has perceived the acceleration sound more sporty than the passenger at a relatively high sound level. Moreover, it was found that passengers were 35 % less sensitive to an annoyance than drivers, whereas the driver was 74 % more susceptible to sportiness than passengers according to the sound level change. This finding is expected to be applied as a sound design strategy that differentiates the acceleration sound level in active sound design.

Design of High Intensity Acoustic Test Facility to Generate Required Sound Pressure Level and Spectrum (설정 음압 및 스펙트럼 재현을 위한 음향 환경 시험 챔버의 기본 설계 변수 선정)

  • 김영기;우성현;김홍배;문상무;이상설
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.867-872
    • /
    • 2002
  • A high intensity acoustic test facility is constructed at Korea Aerospace Research Institute (KARI) by 2003. The reverberant chamber of the facility has a volume of 1,228 cubic meters and shall provide an acoustic environment of 152 dB over the frequency range of 25 Hz to 10,000 Hz. The facility consists of a large scaled reverberant chamber, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of a chamber and power generation systems are controlled to meet the requirement of the test. The volume of a reverberant chamber is controlled by the size of test objects and the reverberant characteristics of a chamber. The capacity of acoustic power generation systems is determined by the energy absorption of a chamber and the efficiency of acoustic modulators. Simple math is employed to calculate the required power of acoustic modulators. Moreover, the paper explains how the distribution of sound pressure level at low frequency is checked by analytical and numerical methods.

  • PDF

A Study of Noise Reduction in Hard Disk Drive (하드디스크 드라이브에서의 소음 저감에 관한 연구)

  • 곽주영;손진승;이행수;홍민표;고정석;조은형;좌성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.579-585
    • /
    • 2001
  • This paper proposed a method of reducing a noise in hard disk drive. This method is performed through three parts of procedures. First procedure is sound-oriented experiment, which contains sound intensity techniques and measurements of sound pressure level and sound power. Second is vibration-oriented experiment, which contains FRF(Frequency Response Function) analysis and disk vibration reduction techniques. And the third is computer-oriented simulation, which contains modal analysis and force vibration analysis using ANSYS and sound radiation prediction using SYSNOISE. As these three parts can affect with each other, they should be considered and conducted simultaneously. Through this procedure sound power is measured 2.7 Bels in idle-spinning mode, which is the lowest noise level in the HDD industries.

  • PDF

Sound Levels and Postural Body Sway during Standing (소음수준에 따른 신체자세동요의 변화)

  • Park, Sung-Ha;Lee, Seung-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-15
    • /
    • 2006
  • Loss of postural balance can possibly lead to increased risk of slips and falls in work places. Present study was performed to investigate the effects of noisy environments on postural stability during standing. It is known that a sound is characterized by the frequency and pressure level of the sound. Therefore, effects of the frequency and pressure level on postural stability were of primary concern. Ten male subjects participated in the experiment. Subject's center of pressure(COP) position was collected on a force plate while they were exposed to different frequency and pressure levels of the sound. Measured COP was then converted into the length of postural sway path in both anterior-posterior(AP) and medio-lateral(ML) axis. Results showed that the length of sway path in AP axis was significantly affected by the frequency of sound. The length of sway path was lowest at frequency level of 2000Hz and increased below and above this frequency range. The sound pressure level, however, did not significantly affect the postural sway length in both AP and ML axis. The results imply that industrial workers in noisy environments should be aware that their abilities of postural balance can be disturbed significantly.

Transmission Loss Prediction of KHST′s Wall (KHST 차량 벽면의 투과손실값 예측)

  • Kim, Kwanju;Taejung Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.317.2-317
    • /
    • 2002
  • Transmission loss of KHST passenger vehicle was calculated using measured acoustic data: In order to verify the transmission loss results for KHST case, similar experiment was carried out in laboratory condition, which result was compared those by geometric acoustic method. The computational results shows good agreement with the transmission loss magnitude from experiments. This paper also mentions items to obtain more accurate transmission loss values, i. e. how to assure reverberant field condition, the selection of source speaker' location.

  • PDF

Radiation characteristics on a stiffened plate structure (보강된 평판구조물의 음향방사특성에 관한 실험적 고찰)

  • Kang, Jun-soo;Kim, Jeung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.879-886
    • /
    • 1998
  • It is very important to understand the vibration and noise characteristics of a structure to developed quiet machines and lessen their noise. In this paper, the vibration and sound radiation characteristics of a simple and a bar-stiffened plate have been investigated using numerical and experimental techniques. In numerical process, FEM analysis has been performed for the vibration level ; the time-space squared and averaged velocity and BEM analysis for sound radiation parameters ; sound power and radiation efficiency. In experimental process, FFT signal processing method has been used. While a power from an exiciter is applied to the structure by using a point contact, sound intensity and vibration level has been measured. Based on these two data, the radiation efficiency has been calculated. Results show that the radiation efficiency for the stiffened structure increases compared to the simple plate, due to the extra edges provided by the stiffener.

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

Comparison of vibration and Noise Characteristics for Reciprocating Air Compressor through the Change of Crankshaft Parameters (크랭크샤프트의 형상 변경을 통한 소형 왕복동 공기압축기의 진동 및 소음 특성 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Aminudin, Bin Abu;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.530-533
    • /
    • 2005
  • Recently, modern reciprocating air compressors tend to be smaller and lighter. But, as the development of performance, they have many problems for noise and vibration. For this reason, many researches are processing for the reduction of noise and vibration by arranging cylinders with V/W type. Especially, noise and vibration problems of reciprocating air compressor cause a rotating unbalance of crankshaft, so it needs a change of crankshaft parameters appropriately. Hence in this study, we changed crankshaft parameters to solve the rotating unbalance and compared results in order to verify the noise and vibration reduction between new and original air compressor. According to modify a crankshaft parameter, the improvements of noise and vibration were showed results of spectrum measured at selected points of the air compressor crankshaft housing and sound intensity contours measured at a belt left side, table that figure out characteristics of noise. Furthermore, we analyzed objective sound quality metrics with recording data of systems. The results showed that, the new design has improved the level of the first harmonic of vibration displacement, noise and objective sound quality metrics.

  • PDF

The Study on the Characteristic Sound Intensity and Frequency of Noise Exposure at Occupational Sites (산업장 소음의 강도 및 주파수 특성에 관한 조사연구)

  • Kim, Kwang Jong;Cha, Chul Whan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.181-191
    • /
    • 1991
  • The present study determined the overall noise level and the distribution of sound pressure level over audible frequency range of noise produced at various work sites. Work-related noise greater than 80dBA produced from 98 separate work sites at 37 manufacturing companies and machine shops were analysed for the overall sound level (dBA) and frequency distribution. In addition, to determine the possible hearing loss related to work site noise, a hearing test was also conducted on 1,374 workers in these work sites. The results of the study were as follows ; 1. Of the total 98 work sites, 57 work sites(58.2%) produced noise exceeding threshold limit value (${\geq}90dBA$) set by the Ministry 01 Labor. In terms of different manufacturing industries the proportion of work sites which exceeded 90dBA was the highest for the cut-stone products industry with 6/6 work sites and lowest for the commercial printing industry with 1/13 work sites. 2. The percentage of workers who were exposed to noise greater than 90dBA was 19.8% (1,040 workers) 01 the total 5,261 workers. In terms of different industries, cut-stone products industry had the most workers exposed to noise exceeding 90dBA with 82.8%, textile bleaching and dyeing industry was next at 30.6% followed by fabricated metal products industry with 27.9%, plastic products manufacturing industry had the lowest percentage of workers exposed to 90dBA exceeding noise with 4.5%. 3. There was a statistically significant correlation between the frequency of noise-induced hearing loss and the percentage of workers exposed to noise exceeding 90dBA (P<0.05). 4. The frequency analysis of noise produced at the 98 work sites revealed that 44 work sites (44.9%) had the maximum sound pressure level at high-frequencies greater than 2KHz. In addition, significantly higher sound pressure level was detected at the high-frequencies at 90dBA exceeding work sites as compared to below 90dBA work sites (P<0.01). 5. The differences in sound level meter's A-and C-weighted sound pressure levels were analysed by frequencies. Of the 28 work sites which showed 0-1 dB difference in the two weighted sound levels, 20 work sites (71.4%) had significantly higher sound pressure levels at high-frequencies greater than 2KHz (P<0.01). Furthermore, there was a tendency for higher sound pressure levels to occur in the high-frequency range as the differences in the two weighted sound levels decreased.

  • PDF

A Study on Characteristics of Noise Propagation for Railway (철도차량 소음방사 특성에 관한 연구)

  • 구동회;김재철;박태원
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics (spherical, cosine and dipole). The spherical, cosine and dipole radiation characteristics compared, and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation have dipole characteristics for low speed range (below about 150Km/h) at electric multiple system. We know that push-pull high speed system has cosine characteristics of noise propagation at low speed range (below about 200Km/h).