• 제목/요약/키워드: Sound insulation/absorption material

검색결과 24건 처리시간 0.024초

음장제어용 막재료의 음향 및 단열특성 (Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control)

  • 정정호;김정욱;정재군;조병욱
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

음향파워 측정에 의한 에어컨 컴프레서의 차음 구조 결정 (Selection of Sound Insulation Structure of Air-conditioner Compressor by Measurement of Sound Power)

  • 이진교;김진섭;모진용;박득용;김봉준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.197-202
    • /
    • 2001
  • The compressor is one of major noise sources in air conditioner outdoor units, especially deteriorating the sound quality. Therefore, the sound insulation materials layered with sound absorption materials are applied around compressors. In this study, the performance of the sound insulators is examined by measuring the insertion losses in power base and the effects of sound absorption materials, method of application and the shape of the insulators are also investigated. The importance of minimizing the opening is revealed well.

  • PDF

항공기소음에 노출된 학교 교실 창호 설계에 관한 연구 (A Study on the Window Design of Classroom Exposed to the Aircraft Noise)

  • 송혁;송민정;박현구;김선우
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.214-223
    • /
    • 2004
  • This study aim to find an appropriate window for classrooms to provide proper sound insulation against aircraft noise and to achieve this goal, measurements were taken of the sound insulation performance of windows with various thicknesses of inner air space and sound absorption materials in the inner air spaces. As a result of this study the improvement of the sound insulation performance of windows(single, double and triple window) was shown through the analysis and the measuring of windows with these characteristics. These results may be applied to the manufacture of window frames and provide basic data for the improvement of the sound insulation performance of windows.

항공기소음에 노출된 학교 교실 창호 설계에 관한 연구 (A Study on the Window Design of School Class Room Exposed to The Aircraft Noise)

  • 송혁;송민정;박현구;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.710-717
    • /
    • 2003
  • This study aim to find an appropriate window for class rooms to provide proper sound insulation against aircraft noise and to achieve this, measurements were taken of the sound insulation performance of windows with varying thicknesses of inner air space and sound absorption materials in the inner air spaces. As a result of (his study the improvement of the sound insulation performance of windows(single , double and triple window) has been shown through the analysis and the measuring of windows with these characteristics. These results may be applied to the manufacture of window frames and provide data lot the improvement of the sound insulation performance of windows.

  • PDF

비대칭 구조의 설치방법에 따른 차음성능평가 (An evaluation on the sound insulation performance by the install method of asymmetric structure)

  • 최둘;문순성;구희모;김항
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.10-12
    • /
    • 2014
  • In ISO 10140-5:2010, defines the reverberation time conditions of the receiving room. The sound absorption side of test specimen is installed in the source room generally. In this study, examined at the change in the sound insulation characteristics for the test specimen of asymmetric structure attached sound absorbing material by changing the installed position. A difference of sound insulation performance was maxium Rw 1 dB, it is preferable to place the larger sound absorption area in source room.

  • PDF

방음판의 흡음률 측정방법 제안을 위한 기초 연구 (A preliminary study on the measurement method for determining the absorption coefficient of sound barrier panels)

  • 오양기;김하근
    • 한국음향학회지
    • /
    • 제42권2호
    • /
    • pp.152-160
    • /
    • 2023
  • 방음벽은 도시 주거환경의 소음문제에 대응하기 위한 가장 기본적인 방법이다. 방음판의 가장 중요한 음향적 기능은 음향투과손실과 흡음률로 표시된다. 특히 주거시설이 밀집되어있는 도심구간의 철도나 간선도로에서 원하지 않는 반사음에 의한 2차 소음 문제를 최소화하기 위하여는 방음판의 흡음성능이 중요하다. 그러나 아직까지 우리나라는 방음판의 흡음률 측정방법에 관한 규격이 마련되어있지 않다. 또한 방음판의 전반적인 음향규격이 이미 만들어져 있는 유럽규격에서조차 흡음률에 관해서는 일반적인 건축마감재료의 흡음률 측정기준을 준용하고 있을 뿐, 방음벽과 방음판의 특성을 감안한 별도의 측정방법을 제시하지 못하고 있다. 흡음률은 재료의 내부로 흡수된 에너지 뿐 아니라 재료를 투과한 에너지까지 합산하여 평가되어야 하는데 현재의 유럽규격은 투과음 에너지를 감안하지 못하고 있는 문제를 안고 있다. 이 논문에서는 현재 제시되고 있는 방음판의 흡음률 측정 규격에 대해 고찰하고, 우리나라에서 실제 사용되고 있는 방음판을 대상으로 투과음을 감안한 새로운 측정방법과의 결과 차이를 검증하였다. 아울러 새로운 방음판 흡음률 측정규격의 마련을 위한 기초적 아이디어를 제시하였다.

SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구 (Acoustic Study of light weight insulation system on Dash using SEA technique)

  • 임효석;박광서;김영호;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

EPS Bead와 유리섬유를 혼입한 샌드위치 패널 심재의 단열 특성 (Thermal Insulation Properties of Sandwich Panel Core with EPS Bead and Glass Wool)

  • 전은영;이창우;황우준;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.77-78
    • /
    • 2022
  • To improve the fire vulnerability of the organic insulation sandwich panel core, which is the main culprit of the large-scale fire disaster, an experiment was conducted to examine the thermal conductivity properties of the core material mixed with the organic insulation material EPS Bead and the inorganic insulation material glass wool. As the Additional ratio of glass wool increased, the thermal conductivity decreased, and it was determined that the replacement of glass wool of 3% or more had little effect on the decrease in thermal conductivity. In addition, it can be seen that the most ideal thermal conductivity is exhibited when 1% Replacement ratio of EPS and 3% glass wool are added. The core material of such organic and inorganic insulation materials is judged to be a core material that can compensate for the fire vulnerability of existing insulation materials. Therefore, in order to determine whether it is used as a core material for sandwich panels, additional studies such as fire resistance experiments and sound absorption experiments are needed in the future.

  • PDF

제조시점에 따른 섬유상 흡음재의 물리적 특성 변화 (Changes in Physical Properties of Fibrous Sound Absorption Materials According to the Manufacturing Time)

  • 정영선;김경우
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.562-568
    • /
    • 2014
  • This study aimed to identify changes in the physical properties of artificial mineral-fiber materials used as building insulation that had been installed in the outer walls of buildings for a long time. To achieve this goal, glass fiber and rock wool were collected from outer walls in actual buildings and their acoustic and thermal performances were measured. These were compared with measurements from similar products manufactured recently. The results showed that old, used samples had a lower sound absorption coefficient compared to recently manufactured materials. The old samples also displayed increased compressibility compared to new materials. For example, the compressibility difference for glass wool was 7.32 mm. Old samples had a dynamic stiffness $1.28MN/m^3$ higher than new material samples. The thermal conductivity of both old and new samples increased within creasing temperature. They showed similar results at temperatures between 0 and $20^{\circ}C$.

하수(下水)슬러지 소각재(燒却滓)를 사용한 경량재료(輕量材料) 제조연구(製造硏究) (A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash)

  • 이화영
    • 자원리싸이클링
    • /
    • 제17권4호
    • /
    • pp.30-36
    • /
    • 2008
  • 본 연구에서는 하수슬러지 소각재를 원료로 사용한 다공성 경량재료의 제조 및 물성측정 실험을 수행하였다. 경량충진재로써 perlite와 silica sphere의 2종류 경량물질을 각각 사용하였으며, 무기바인더로써 벤토나이트를 첨가하여 $1,000^{\circ}C$에서 소성하는 방법으로 경량재료를 제조하였다. 제조한 시편은 밀도, 압축강도, 열전도도 및 흡음율을 측정하여 원료 조성 및 제조 조건에 따른 각각의 물성변화를 조사하였다. 실험결과 perlite를 경량충진재로 사용한 시편의 밀도는 $1.23{\sim}1.37g/cm^3$, 압축강도는 $242.3{\sim}370.5kg/cm^2$로 나타났으며, silica sphere를 사용한 경우는 perlite에 비해 밀도가 낮고 압축강도가 $100kg/cm^2$ 이하인 것으로 나타났다. 또한, 경량재료의 열전도도는 원료 조성에 따라 $0.3{\sim}0.5W/m^{\circ}K$의 수치를 보여 일반 콘크리트보다 단열효과가 매우 우수한 것으로 나타났다.