• Title/Summary/Keyword: Sound diffraction

Search Result 67, Processing Time 0.024 seconds

Efficient Sound Control Method in Virtual Environments Using Raytracing Based Diffraction

  • Kim, Jong-Hyun;Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose diffraction-based sound control method to improve sound immersion in a virtual environment. The proposed technique can express the wave and flow of sound in a physical environment and a pattern similar to diffraction in real-time. Our approach determines whether there is an obstacle from the location of the sound source and then calculates the position of the new sound reflected and diffracted by the obstacle. Based on ray tracing, it determines whether or not it collides with an obstacle, and predicts the sound level of the agent behind the obstacle by using the vector reflected and refraction by the collision. In this process, the sound attenuation according to the distance/material is modeled by attenuating the size of the sound according to the number of reflected/refracted rays. As a result, the diffraction pattern expressed in the physics-based approach was expressed in real time, and it shows that the diffraction pattern also changes as the position of the obstacle is changed, thereby showing the result of naturally spreading the size of the sound. The proposed method restores the diffusion and diffraction characteristics of sound expressed in real life almost similarly.

Real-time Sound Control Method Based on Reflection and Diffraction of Sound in Virtual Environment (가상 환경에서 사운드의 반사와 회절을 이용한 실시간 소리 제어 방법)

  • Park, Soyeon;Park, Seong-A;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.269-271
    • /
    • 2021
  • 본 논문에서는 실제 현실에서 표현되는 소리의 특징인 파동(Sound wave)과 흐름(Sound flow) 그리고 회절(Diffraction of sound)을 가상환경에서 실시간으로 표현할 수 있는 방법을 제안한다. 우리의 접근 방식은 소리가 재생되는 위치로부터 장애물 여부를 판단하고, 장애물이 존재할 시, 장애물로 인해 반사와 회절된 새로운 소리 위치를 계산한다. 이 과정에서 레이트레이싱 기반으로 장애물과의 충돌 여부를 판단하고, 충돌에 의해 굴절된 벡터를 이용하여 장애물 너머에서 들리는 소리의 크기를 계산하며, 충돌된 레이의 개수에 따라 소리의 크기를 감쇠시킨다. 본 논문에서 제안하는 방법을 이용한 소리의 회절은 물리 기반 접근법에서 나타나는 회절 형태를 실시간으로 표현했으며, 장애물에 따라서 회절 패턴이 변경되고, 이에 따라 소리의 크기가 자연스럽게 조절되는 결과를 보여준다. 이 같은 실험은 실제 현실에서 나타나는 소리의 퍼짐과 같은 특징을 거의 유사하게 복원해냈다.

  • PDF

A Study on the Attenuation of Road Traffic Noise with two Pillar Buildings (두 개의 각주형 건물에 의한 도로교통소음의 감쇠에 관한 연구)

  • 김화일
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • When houses or buildings are adjacent to roads, with no effective prevention of road traffic noise, neighbors are exposed to it. It is important to understand the properties of sound propagation before taking a countermeasure against road traffic noise. It is easy to estimate the properties of sound propagation without obstacles, but very difficult and complex to estimate them with ones. The purpose of this study is to present a useful tool that can estimate the properties of sound propagation. In the beginning of this study, we investigated the attenuation of road traffic noise with two pillar buildings, and presented practical approximate calculation method, and verified that through scale model. The outcomes from this study are as follows : (1) Over second reflection sound waves can be ignored. (2) Diffraction sound waves that happen when reflection sound and first diffraction wave are projected at the wedge of other building can be ignored.

Experimental Study on Sound Diffraction over Barrier Using a Spark Discharge Sound Source (스파크 음원을 이용한 장벽의 회절음장에 관한 실험 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.466-471
    • /
    • 1999
  • The prediction methods of diffraction field in barrier has beenreported much about the infinite length barrier and it is very few work that reasonable sound source was used in experiment. This study, however, has worked about the several model barrier with acoustic scale model experiment. In the case of scale model experiment, it is difficult to use the kind of source with sufficiently characteristics. A spark discharge sound source with the high repeatability, broad band spectra, small size and omnidirectivity has veen used for the prediction of diffraction field. Several model barriers with different length on the ground were considered for the experiment and compared with the the results calculated by the approximation.

  • PDF

A Study on the Indoor Sound-field Analysis by Adaptive Triangular Beam Method (적응 삼각형 빔 방법에 의한 실내음장 해석)

  • 조대승;성상경;김진형;최재호;박일권
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.217-224
    • /
    • 2003
  • In this study, the adaptive triangular beam method(ATBM) considering different sound reflection coefficients and angles of a triangular beam on two or more planes as well as diffraction effect is suggested. The ATBM, subdividing a tracing triangular beam into multiple triangular beams on reflection planes, gives reliable and convergent sound-field analysis results without the dependancy on the number of initial triangular beam segmentation to search sound propagation paths from source to receiver. The validity of the method is verified by the comparison of numerical and experimental results for energy decay curve and steady-state sound pressure level of rooms having direct, reflective and diffractive sound paths.

Sound Propagation over Multiple Wedges and Barriers

  • Kim, Hyun-Sil;Kim, Jae-Sueng;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.44-50
    • /
    • 2004
  • A theoretical formula that is based on the geometrical theory of diffraction (GTD) is proposed for computing sound diffraction by multiple wedges, barriers, and polygonal-like shapes. The formula can treat both convex and concave edges, where edges mayor may not be inter-connected. Comparisons of theoretical predictions with other results done by the BEM or experiments for scaled model confirm the accuracy of the present formula. Numerical examples such as double wedges and doubly inclined barrier show that when there exist several diffraction paths for given source and receiver positions, the insertion loss is dominated by the diffraction associated with the shortest propagation path.

Noise Source Localization using 3 Dimensional Spherical Probe (3 차원 구형탐촉자를 이용한 소음원 탐지)

  • Na, H.S.;Kim, Y.G.;Choi, K.Y.;Patrat, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1704-1709
    • /
    • 2000
  • This paper proposes a spherical probe allowing acoustic intensity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has non-linear properties. In this paper, we introduce the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with several tests.

  • PDF

An Inquiry Over Rayleigh's Pioneering Experiments for the Detection of Shadow, Reflection, Interference, and Diffraction of Sound (소리의 그늘, 반사, 간섭, 회절의 검출을 위한 레일리의 선구적 실험에 대한 연구)

  • Ku, Ja-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.55-60
    • /
    • 2007
  • The shadow, reflection, interference, and diffraction are proper phenomena concerning sound that is a kind of wave. By the late nineteenth century, similar optical phenomena had been detected already but these phenomena concerning sound had not been convincingly detected. It was Rayleigh who succeeded in detecting those phenomena without any reasonable doubt by the virtue of his original instruments and smart experimental settings. Rayleigh could detect the sound shadow by using the corner of a building and erase the shadow by some reflectors. And he constructed some apparatus similar to Young's interference apparatus famous in optics to detect the sonic interference. Furthermore, he first succeeded in illustrating the acoustical effectiveness of Poisson's disk by which optical diffraction had already been well known, and tested the effect of diffraction by spherical obstacles to ascertain that the result coincided with his theory.

The Inverse Modeling of Diffraction Phenomena under Plane Wave Incidence using Neural Network (평면파 입사시 신경회로망을 이용한 회절현상의 역모델링)

  • Na, Hui-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1175-1182
    • /
    • 2000
  • Diffraction systematically causes error in acoustic measurements. Most probes are designed to reduce this phenomenon. On the contrary, this paper proposes a spherical probe a] lowing acoustic inten sity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has nonlinear properties. In this paper, we propose the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with better performances. A number of computer simulations are carried out in order to demonstrate the diffraction phenomena under various angles. Simulations for the inverse modeling of diffraction phenomena have been successfully conducted in showing the superiority of the neural network.

An Experimental Study on the Reduction Effect of Reflected Sound and Diffraction Effect by Types of Noise Barrier (방음벽 종류별 반사음 저감효과 및 회절효과에 관한 실험적 연구)

  • 김흥식
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.245-251
    • /
    • 1996
  • This study is to suggest the improved noise barrier which is harmonized with surrounding landscape and maintained the similar reduction of reflected sound and diffraction effects in comparison with the aluminum noise barrier of absorbing type which is formed a great majority in Korea. In this study the two improved models of noise barrier(Diffuse and Disperse type) were designed and compared with the noise barriers of absorbing type in the acoustics performance (the reduction of reflected sound and diffraction effects) through the field and full-scale experimental measurement. As these two models have the same acoustic performance as the noise barrier of aluminum absorbing type, it is suggested that these models can be applied to the improved noise barrier as an alteration of aluminum absorbing type barrier.

  • PDF