• Title/Summary/Keyword: Sound control

Search Result 1,193, Processing Time 0.03 seconds

Newly Designed HRTF Measurement System and its Analysis (머리전달함수 측정시스템의 개발과 분석)

  • Lee, Yun-Jae;Park, Young-Jin;Park, Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.202-205
    • /
    • 2010
  • When we render 3D sound images using headphones or speakers, the main key of this technology is the Head-related transfer function (HRTF) database. Even though there are various HRTF databases, they have some drawbacks such as detrimental effects caused by imperfect measuring environment and insufficient measurement points. Moreover there is no database with Korean subjects. We are planning to develop the HRTF database for Korean. As a first step to establish the HRTF database aimed at Korean, the new HRTF measurement system with minimized aforementioned drawbacks is designed. In this paper, the newly designed HRTF measurement system is introduced and the overall effects caused by the diffraction of the apparatus, especially the headrest and backrest of the chair, are analyzed. The backrest of the chair does not distort the HRTFs significantly while the headrest makes significant distortion on the HRTFs and it could have significant effects on directional perception. We determined acceptable head rotation angle and head position of the subject for accurate HRTF measurement based on the experiments with B&K HATS. We conclude that the 3 degrees of the head rotation and the 1.5cm front/back/left/right shift of the head do not distort the HRTFs significantly.

Spatially Mapped GCC Function Analysis for Multiple Source and Source Localization Method (공간좌표로 사상된 GCC 함수의 다 음원에 대한 해석과 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.415-419
    • /
    • 2010
  • A variety of methods for sound source localization have been developed and applied to several applications such as noise detection system, surveillance system, teleconference system, robot auditory system and so on. In the previous work, we proposed the sound source localization using the spatially mapped GCC functions based on TDOA for robot auditory system. Performance of the proposed one for the noise effect and estimation resolution was verified with the real environmental experiment under the single source assumption. However, since multi-talker case is general in human-robot interaction, multiple source localization approaches are necessary. In this paper, the proposed localization method under the single source assumption is modified to be suitable for multiple source localization. When there are two sources which are correlated, the spatially mapped GCC function for localization has three peaks at the real source locations and imaginary source location. However if two sources are uncorrelated, that has only two peaks at the real source positions. Using these characteristics, we modify the proposed localization method for the multiple source cases. Experiments with human speeches in the real environment are carried out to evaluate the performance of the proposed method for multiple source localization. In the experiments, mean value of estimation error is about $1.4^{\circ}$ and percentage of multiple source localization is about 62% on average.

Design and Implementation of Bird Repellent System (조류 퇴치 시스템의 설계 및 구현)

  • Hong, Hyunggil;Cho, Yongjun;Woo, Senongyong;Song, Suhwan;Oh, Jangseok;Yun, Haeyong;Kim, Dae Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.104-109
    • /
    • 2019
  • Damage caused by wild animals such as pheasants and magpies is a problem in rural areas. A bird repellent system based on sensing and repelling farm pest animals and birds is proposed herein. This system is equipped with a bird model part on a supporting platform and comprises a sound source generator, a system control user interface, and a sensor in the center. The sensor is composed of an illuminance sensor and a PIR sensor. The illuminance sensor distinguishes between day and night, whereas the PIR sensor detects birds or wild animals and outputs them from the sound generator. The entire system can be managed easily by the user interface and system control.

Experimental Investigation of Supersonic Jet Noise Reduction Using Microjet Injection

  • Mamada, Ayumi;Watanabe, Toshinori;Uzawa, Seiji;Himeno, Takehiro;Oishi, Tsutomu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.622-627
    • /
    • 2008
  • Experiment of active noise control on supersonic jet noise was conducted by use of microjet injection. The microjets were injected to the shear layer of the main jet through 22 small holes at the lip of a rectangular nozzle. Based on the measurement of farfield sound pressure, it was found that the jet noise was effectively reduced by several dB(in some cases up to 10 dB). The power levels of all measurement points were also reduced by use of microjet injection. The microjet affected not only the broadband noise but also the screech tone noise. The sound pressure level, the frequency of the screech tone, and the structure of the jet could be changed by the microjet. Flow visualization with schlieren technique was also made to observe the effect of microjet on the flow field.

  • PDF

The Effectiveness of Air Insoles in Improving Temporomandibular Disorders

  • Mi-Ae Sung;Su-Youn Ko;Dong-Kyu Kim
    • PNF and Movement
    • /
    • v.21 no.3
    • /
    • pp.273-280
    • /
    • 2023
  • Objective: In patients with temporomandibular joint disorders, air insoles are used to investigate functionality and pain changes in the temporomandibular joint when walking in daily life. Intervention: Sixty-five patients with temporomandibular joint disorder were recruited: 34 as a control group who walked more than 7,000 steps a day in daily life, and 31 as an experimental group who were instructed to take at least 7,000 steps every day while wearing their air insoles. Measurements: To determine the effects of air insoles on temporomandibular joint pain, steady-state pain, maximum mouth opening, average pain, and the most severe pain were measured before and after the experiment. In addition, to evaluate functionality, the ability to open the mouth in a comfortable state, pain when opening the mouth, and the point of sound and maximum degree to which the mouth could be opened were evaluated before and after the experiment. Results: Pain, mouth openness, and sound points showed significant differences from the control group after the experiment, and the maximum mouth opening range showed no significant difference. Conclusion: When air insoles were used by patients with temporomandibular joint disorder, the functionality of the temporomandibular joint was improved and pain was decreased.

Vibration Pattern Editor and Controller for Sound-driven Vibration System (사운드 기반 진동 시스템을 위한 진동 패턴 에디터와 컨트롤러)

  • Oh, Sung-Jin;Cho, Dong-Hyun;You, Yong-Hee;Sung, Mee-Young;Jun, Kyung-Koo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.564-568
    • /
    • 2008
  • In this paper, we develop a vibration pattern editor and a vibration pad controller for a sound-driven vibration system, which can generate diverse vibration effects in realtime by analyzing signals from the sound output of PC. It consists of a DSP system to analyze the sound, a wrist-wearable vibration pad, and its controller. For the vibration pattern editor, we define four elements to describe the pattern the locations of vibrating elements, start time, duration, and vibration intensity. The editor provides a GUI through which users can create such patterns fast and easily, and store them for reuse. We also propose a pattern-interpreting controller. It is able to interpret patterns created by the editor and control the pad accordingly. It can avoid the need to change the controller firmware whenever desired patterns change.

  • PDF

A Study on the Noise Emission Characteristics of Turbo Axial Flow Fan by Experimental Method (터보형송풍기의 소음 방사특성에 관한 실험적 연구)

  • 김동규;백종진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-277
    • /
    • 2003
  • Recently as the environmental noise getting influential social problem, it is the fact that the demand on noise reduction increases with the advance of the standard of living. Therefore increasing the interest on the noise in common, it is eagerly demanded that the endeavour for reducing the noise of the rotating machinery, especially the machinery related a flowing including the household electric products, which is pointed out the primary noise source in environment. As proceeding study for fan noise, theory of fan noise property is arranged and this control method is shown. Blade passage noise of total noise spectrum. Thus in the aspect of noise reduction, noise source and identification of noise radiation characteristics of axial flow fan are demanded in detail. The sound source is analyzed by using sound pressure and sound intensity. In that time, synchronization of axial flow fan using optical sensor is executed, and to identify the location of exact noise source in the fan profile determination of recording time is proposed. In the rotating of tan, it is explained that the location of noise source exists in and by the directivity, the noise radiation pattern of axial flow fan is determined and the flow of sound is visualized in the figure of contour mapping.

  • PDF

The Effects of Maternal Heart Sound on the Weight, Physiologic Responses and Behavioral States of Premature Infants (산모의 심장소리가 미숙아의 체중, 생리적 반응 및 행동상태에 미치는 효과)

  • Yeum, Mi-Kyung;Ahn, Young-Mee;Seo, Hwa-Sook;Jun, Yong-Hoon
    • Child Health Nursing Research
    • /
    • v.16 no.3
    • /
    • pp.211-219
    • /
    • 2010
  • Purpose: The study was done to measure the effects of maternal heart sound on body weight, physiologic reactions (heart rate [HR] and cortisol) and behavioral states of preterm infants. Methods: Thirty-five preterm infants were recruited from a neonatal intensive care unit at a university hospital. Institutional Review Board approval and informed consent were obtained. The infants were assigned to an experimental group (n=18) with an auditory stimulation for 7 days of life, a continuous delivery of maternal heart sound using MP3 attached inside the incubator, or to a control (n=17) without any auditory stimulation. The outcome variables, daily variations in weight, HR and behavioral states, and differences in cortisol were analyzed. Results: There were differences in variations of daily weights (F=3.431, p=.011) and in cortisol (t=3.184, p=.006) between groups, but no difference in variations of daily HR (F=0.331, p=.933) and behavioral states (F=1.842, p=.323). Conclusion: The findings support the safety of continuous maternal heart sound as no changes in HR and behavioral states occurred, and the efficacy as weight increased and cortisol decreased. This auditory simulation may lead to more efficient utilization of energy in preterm infants by consistently providing familiar sounds from intrauterine life and blocking noxious sounds from NICU environments.

The Study on the Improvement of Ventilation Performance in the Soundproof Tunnel (방음터널의 자연환기성능 향상에 대한 연구)

  • Lee Kyung-Hee;Cho Sung-Woo;Choi Jeong-Min;Kim Kyung-hwan;Park Chang-Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.922-929
    • /
    • 2005
  • This paper compared ventilation performance between the sound roof tunnel with flat roof and the sound roof tunnel with gable roof. The ventilation rate of the sound roof tunnel is calculated by natural ventilation rate plus ventilation by vehicle. The roof type is divided by the shape of the roof and the ventilator location on the roof. The results between calculation and CFD on the ventilation rate are almost alike. The ventilation rate on the flat roof is $558.4\;m^3/s$ with mid-ventilator and $496.8\;m^3/s$ with left-right ventilator. The ventilation rate on the gable roof is $653.2\;m^3/s$ with mid-ventilator and $611.6\;m^3/s$ with left-right ventilator. The ventilation rate of soundproof with gable roof is higher than that with flat roof. The ventilation rate and with mid-ventilator is higher than that with left-right ventilator the soundproof roof. Therefore, the ventilation performance of soundproof roof depends on the roof shape and ventilator location on the roof.

Evaluation of Sound Insulation Performance of a Unit Cabin Mock-up (유니트 캐빈 목업(mock-up)의 차음성능평가)

  • Kim, Hyun-Sil;Kim, Sang-Ryul;Kim, Bong-Ki;Kim, Jae-Seung;Lee, Sung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Sound insulation performance of a unit cabin mock-up is studied, where two identical rooms simulating cruise ship cabin are installed. STL (Sound Transmission Loss) measurement in the mock-up shows that STL of the partition between rooms is degraded by imperfect door ceiling and gap between wall and floor. It is also observed that gap around lighting and electrical outlet slightly affect the STL in high frequency ranges, since lighting and electrical outlet are supported by mineral wool in the back side due to fire-resistance requirement. Even after all possible gaps are sealed, STL of the partition is found to be lower than that measured in the laboratory by 9 dB. Measurement of SBN (Structure-Borne Noise) reveals that flanking transmission of SBN along the steel deck floor can severely deteriorate STL of the partition. Statistical energy analysis (SEA) of the mock-up confirms importance of the floor SBN control, in which increasing damping is essential to ensure high STL.