• Title/Summary/Keyword: Sound Wave

Search Result 572, Processing Time 0.025 seconds

The Development of Third-Party Damage Monitoring System for Natural Gas Pipeline Using Sound Propagation Model (음향 전파 모델을 이용한 천연가스 배관용 타공사 모니터링 시스템의 개발)

  • Shin, Seung-Mok;Suh, Jin-Ho;Yu, Hui Ryong;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.905-910
    • /
    • 2003
  • In this paper, we develop real-time monitoring system to detect third-party damage on natural gas pipeline by using sound propagation model. Since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed real-time monitoring system can execute a significant role in reducing many third-party damage incidents. The developed system is composed of three steps as follows: i) DSP based system, ii) wireless communication system, iii) the calculation and monitoring software to detect the position of third-party damage using the propagation speed of acoustic wave. Furthermore, the developed system was set at practical offshore pipeline between two islands in Korea and it has been operating in real time.

  • PDF

A Study on Partial Discharge Diagnostic System for Power Cable using RLCR

  • Park, Keeyoung;Choi, Hyungkee;Lee, Chulhee;Hong, Soomi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • This system is a diagnosis system that checks whether it causes a partial discharge of a power cable or not. It is to classify normal from abnormal-normal, PD (Partial Discharge) sound through analysis of RLCR (Relative Level Crossing Rate) and spectrogram energy algorithm. Partial discharge diagnostic system has a function that stores PD sound and analyzes the data. The wave shape of PD sound is similar to noise and is systematically generated by partial discharge. Therefore, in this paper, we could discreminate between normal and abnormal case using relative level crossing rate (RLCR) and spectrogram of frequency energy rate.

Directional Characteristics of Parametric Loudspeakers in Near-field (파라메트릭 스피커의 근접음장 방향성 특성연구)

  • Ju, Hyeong-Sick;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.545-550
    • /
    • 2005
  • A parametric loudspeaker is a device to generate highly directional sound using ultrasounds. The parametric loudspeaker could be used to focus sound in a limited space, so it is important to study the characteristics of the parametric loudspeaker in near-field. Mechanism of the audible sound generation in the parametric loudspeaker is explained by nonlinear interaction of the ultrasounds and is modeled as KZK equation, the nonlinear wave equation which contains attenuation, nonlinearity and diffraction. To measure the directional characteristics of the parametric loudspeaker precisely, a method to reduce the spurious signal which taints the measured signal was invented. With the method, directivity patterns of the parametric loudspeaker were measured and compared to the approximated solution and piston sources.

  • PDF

Study on the Structure-borne Sound Transmission of a Machine through Rubber Mounts (고무마운트를 통한 장비의 고체음 전달에 관한 연구)

  • Kim, Bong-Ki;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Joo;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.655-660
    • /
    • 2000
  • Machines on board a ship are mounted on decks and transmit its structure-borne sound to the deck through resilient mounts. To predict the ship noise generated by the structure-borne sound of the machine, It is necessary to estimate the vibration level of the base structure. In this paper, a simple dynamic model is considered for vibration isolation systems consisting of a source, an isolator, and a base structure. The high frequency mobilities of the simple base structure are reviewed and wave effects in the mount are discussed in relation to isolation performance.

  • PDF

Study on Sound Transmission Characteristics by the Delamination of Acoustic Window (음향창 박리에 따른 음향투과특성 연구)

  • Jung, Byung-Kyoo;Kang, Myunghwan;Seo, Youngsoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.375-381
    • /
    • 2021
  • This paper investigated sound characteristics by the delamination of an acoustic window. In detail, acoustic scattering and transmission characteristics on the delaminated acoustic window were estimated using an experimental and numerical approach. The experiment results showed that acoustic wave could lose its amplitude and take phase delay when it propagates the delaminated acoustic window. The numerical results showed that scattering phenomena occur on the delamination surface. The scattering characteristics presented differently according to the delamination size in the acoustic window. It also showed that transmitted sound distortion due to delamination could cause a direction detection error of SONAR by changing the position of the main lobe and the magnitude of the side lobe. In conclusion, the delamination has to be managed during the manufacturing process of acoustic windows.

A Study on Seasonal Variation of Propagation Loss in the Yellow Sea Using Broadband Source of Low Frequency (황해에서 저주파 광대역 음원을 이용한 전달손실의 계절변동 연구)

  • 김봉채;최복경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • The sound wave in the sea propagates under the effect of water depth, sound velocity structure, sea surface and bottom roughness, and bottom sediment distribution. In particular the sound velocity structure in shallow water varies with time and space, an? the sediment distributes very variedly with place. In order to investigate the seasonal variation of low-frequency sound propagation in the Yellow Sea, the propagation experiments were conducted along the same track in the middle part of the Yellow Sea at various seasons of spring. summer, and autumn. In this paper we consider the measurement results on the propagation loss with the sound velocity structure, and investigate the seasonal variation of the propagation loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn. And the propagation losses measured in autumn were smaller than the losses in spring. The seasonal change of the propagation loss increased with the rise of sound frequency and the propagation range.

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.

Detection of Laser Generated Ultrasonic Wave Using Michelson Interferometer (마이켈슨 간섭계를 이용한 레이저 여기 초음파의 검출)

  • Kim, Kyung-Cho;Yamawaki, Hisashi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • In this paper, ultrasonic wave in the thermoelastic regime was generated in a steel disk by illuminating a pulse laser (Q-switched Nd:YAG) on the surface of the sample and was detected on the other side by Michelson interferometer which was stabilized by feed back control. The experimentally detected displacement waveform of the ultrasonic wave showed good agreement with the theoretically expected one. Also it was shown that sound speeds of longitudinal and shear wave were similar to ones measured by pulse-echo method using a contact transducer. As an application of the noncontact ultrasonic measurement by using laser based ultrasonics, the sound speed in the sample was monitored while the sample was heated in a furnace, and the result showed that it decreased according to the increase of sample temperature.

  • PDF

One-Sided Nondestructive Evaluation of CFRP Composites By Using Ultrasonic Sound (초음파를 이용한 CFRP 복합재의 일방향 비파괴 평가)

  • Im, Kwang-Hee;Zhang, Gui-Lin;Choi, Sung-Rok;Ye, Chang-Hee;Ryu, Je-Sung;Lim, Soo-Hwan;Han, Min-Gui;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • It is well known that stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences their properties. Ultrasonic NDE of composite laminates is often based on the backwall echoes of the sample. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Miniature potted angle beam transducers were used (Rayleigh waves in steel) on solid laminates of composites. Experiments were performed to understand the behavior of the transducers and the nature of the waves generated in the composite (mode, wave speed, angle of refraction). C-scan images of flaws and impact damage were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to fiber orientation of the CFRP composites, including low level porosity, ply waviness, and cracks. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with numerical results and one-side ultrasonic measurement might be very useful to detect the defects.

Analysis of Acoustic Psychology of City Traffic and Nature Sounds (도심 교통음과 자연의 소리에 대한 음향심리 분석)

  • Kyon, Doo-Heon;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2009
  • In modern society, most people of the world are densely populated in cities so that the traffic sound has a very significant meaning. people tend to classify traffic sound as a noise pollution while they are likely to categorize most nature sound as positive. In this paper, we applied various forms of FFT filters into white noise belonged in nature sound to find frequency characteristics of white noise which preferred by people and confirm its correlation with nature sound. In addition, we conducted an analysis through the comparison of various traffic and nature sound waveforms and spectra. As a result of analysis, the traffic sound have characteristics which sound energy had concentrated on specific frequency bandwidth and point of time compared to nature sound. And we confirmed the fact that these characteristics had negative elements to which could affect to people. Lastly, by letting the subjects listen directly to both traffic and nature sound through brainwave experiment using electrode, the study measured the energy distribution of alpha waves and beta waves. As a result of experiments, it has been noted that urban sound created a noticeably larger amount of beta waves than nature sound; on the contrary, nature sound generated positive alpha waves. These results could directly confirm the negative effects of traffic sound and the positive effects of nature sound.