• Title/Summary/Keyword: Sound Visualization

Search Result 119, Processing Time 0.025 seconds

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

A study of sound graphic equalizer configuration using photo image (이미지를 이용한 사운드 그래픽 이퀄라이저의 구성에 대한 연구)

  • Seo, June-Seok;Hong, Sung-Dae;Park, Jin-Wan
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.430-435
    • /
    • 2008
  • Thanks to the development of IT technology, there have been developed a variety of types of portable music players. IT technology didn't stop there, however. It has gone to developing GUIs (Graphic User Interfaces) to deliver more information to the user. As the function of GUIs has become important, the music players are being required to show characteristics of the sounds they output visually beyond just delivering the sounds through analyzing the information that the sounds contain. To visualize the information of sounds, that is to say, has become substantial. In this process, sound graphic equalizers have been developed in order. The object of this study is to produce a new sound graphic equalizer with new forms of expressing visual images of sounds besides the bar graphs, in which user feedback is possible. This study has devised a new sound visualization form in visually expressing the information of sounds by analyzing their characteristics. This new sound visualization provides a sound graphic equalizer with which the user can select images for the information of the sounds s/he listens. This study suggests a new alternative GUI with which the user can change the form of the outputted images in realtime as communicating with the player.

  • PDF

Aurally Relevant Analysis by Synthesis - VIPER a New Approach to Sound Design -

  • Daniel, Peter;Pischedda, Patrice
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1009-1009
    • /
    • 2003
  • VIPER a new tool for the VIsual PERception of sound quality and for sound design will be presented. Requirement for the visualization of sound quality is a signal analysis modeling the information processing of the ear. The first step of the signal processing implemented in VIPER, calculates an auditory spectrogram by a filter bank adapted to the time- and frequency resolution of the human ear. The second step removes redundant information by extracting time- and frequency contours from the auditory spectrogram in analogy to contours of the visual system. In a third step contours and/or auditory spectrogram can be resynthesised confirming that only aurally relevant information were extracted. The visualization of the contours in VIPER allows intuitively to grasp the important components of a signal. Contributions of parts of a signal to the overall quality can be easily auralized by editing and resynthesising the contours or the underlying auditory spectrogram. Resynthesis of time contours alone allows e.g. to auralize impulsive components separately from the tonal components. Further processing of the contours determines tonal parts in form of tracks. Audible differences between two versions of a sound can be visually inspected in VIPER through the help of auditory distance spectrograms. Applications are shown for the sound design of several interior noises of cars.

  • PDF

Design of Visualization System for Stress Evaluation of Elastic Wave (탄성파의 응력평가를 위한 가시화시스템 설계)

  • Nam, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.576-582
    • /
    • 2008
  • This paper describes a synthesized photoelastic method developed for the visualization and evaluation of sound pressure distribution of elastic wave in a solid. The visualization of wave stress field is achieved by synthesizing two photoelastic pictures, in which the direction of the principal axis of linear polariscopes differs by $45^{\circ}$. From the analysis of the wave stress distribution using this method, it is possible to evaluate the characteristics of elastic waves in a solid, such as the intensity of stress, directivity and resolution characteristics of the wave emitted from a commercial probe, and characteristics of scattering from various types of defects.

Sound visualization in time domain by using spatial envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.33-36
    • /
    • 2007
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example, when we need to know only the locations and overall propagation pattern of sound sources, a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope, not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.

  • PDF

The omni-directional sound source analysis for evaluating the vehicle sound insulation performance

  • Takashima, Kazuhiro;Nakagawa, Hiroshi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.484-488
    • /
    • 2007
  • In this paper, the measurement system using the microphone array developed for analyzing cabin noise of the vehicle and its applications are discussed. The sensor is a three dimensional microphone array, the microphones and cameras are equipped on the rigid sphere. The cameras are used for acoustic visualization. As applications, the experiments in both reverberation chamber and anechoic chamber are discussed. These results show that this system is very useful to evaluate or improve the vehicle sound insulation performance.

  • PDF

Visualization of Sound Field of Plate-Cavity Coupled System by Experimental Method (실험적 방법에 의한 평판-공동 연성계의 음장 가시화)

  • 김시문;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.662-668
    • /
    • 1997
  • Since the structural impedance is much greater than that of medium in the most cases, we often assume that the structure is rigid and that the structural vibration is independent of medium, i.e. we usually calculate the vibration of the structure first, and then obtain the radiation sound from it. This assumption is no longer satisfied when the structural stiffness is small or the fluid impedance is comparable to it. This situation often happens in underwater acoustics. Although many researchers have studied about structural-fluid coupling, we have difficulties in solving the problem analytically. Therefore the numerical method using powerful computation leads us to obtain the various coupling problem. To understand the physical coupling phenomena, visualization of sound field by a geometrically simple system(plate-cavity coupled system) is performed experimentally. Acoustic holographic method is used to estimate sound field.

  • PDF

Research on the Visualization of Music and Hypermediacy in Paik Nam-June's Video Art

  • Song, Man-Yong;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1687-1697
    • /
    • 2007
  • Paik Nam-June is known as a Video Artist. Video is a presentation tool with the feature of recordability. However, it is not only a video which has been applied as an art presentation tool by him. Nevertheless, the existing researches fail to notice the aesthetic concept which is shown as the rest contents or forms, as they focus on the media features of Paik Nam-June's video. Therefore, this article aims at contemplating the art world of Paik Nam-June with its contents as 'visualization of music' and its form as 'hypermediacy' Therefore, 1. Sound is shown as the visualization of music, with the direct influence of absolute hollowness and noise of John Cage, originated from Zen Buddhism, while the foundation of it is known to be from the liberation of dissonance of Arnold Schoenberg and creative impromptu of shamanic sound. 2. The from of TVs influence of the orchestra, originated from Culture of a dining table in Korean. and indicated hypermediacy 3. Paik Nam-June indicated 'Text-interpretation' us to text analytics of 'how to read', rather than the question of 'what to tell' by intermedia as the visualization of music & hypermediacy.

  • PDF