• Title/Summary/Keyword: Sound Detection

Search Result 451, Processing Time 0.059 seconds

Sound Spectral Analysis of Valvular Clicks of Thrombosed Valve Prostheses (혈전이 발생한 인공판막의 판막음 스펙트럼 분석)

  • Kim, S.H.;Chang, B.C.;Tack, G.;Huh, J.M.;Kim, N.H.;Kang, M.S.;Cho, B.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.105-108
    • /
    • 1994
  • A comparative study was made of the valvular sounds produced by normal prosthetic valves with thrombosed prosthetic valves. Comparisons of the closing sound were made for the power frequency spectra associated with individual valves. We used periodogram approach to obtain the spectral characteristics of the valve. Spectral analysis system was tested in mock circulatory system by comparing normal valves with those produced by the same valves but having simulated thrombosis at the hinge of the valve. The heart sounds was recorded from two patients having normal mechanical valve and thrombosed mechanical valve. The estimated spectrum of the thrombosed mechanical valve displayed lower apparent peak frequency than that of the normal valve. The results showed that frequency spectra gave information pertinent to the valve malfunction. Sound spectral analysis is simple and alternative diagnostic tool for early detection of prosthetic valve mal function.

  • PDF

Condition Monitoring of an LCD Glass Transfer Robot Based on Wavelet Packet Transform and Artificial Neural Network for Abnormal Sound (LCD 라인의 음향 특성신호에 웨이브렛 변환과 인경신경망회로를 적용한 공정로봇의 건정성 감시 연구)

  • Kim, Eui-Youl;Lee, Sang-Kwon;Jang, Ji-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.813-822
    • /
    • 2012
  • Abnormal operating sounds radiated from a moving transfer robot in LCD (liquid crystal display) product lines have been used for the fault detection line of a robot instead of other source signals such as vibrations, acoustic emissions, and electrical signals. Its advantage as a source signal makes it possible to monitor the status of multiple faults by using only a microphone, despite a relatively low sensitivity. The wavelet packet transform for feature extraction and the artificial neural network for fault classification are employed. It can be observed that the abnormal operating sound is sufficiently useful as a source signal for the fault diagnosis of mechanical components as well as other source signals.

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.

Context-Awareness Cat Behavior Captioning System (반려묘의 상황인지형 행동 캡셔닝 시스템)

  • Chae, Heechan;Choi, Yoona;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • With the recent increase in the number of households raising pets, various engineering studies have been underway for pets. The final purpose of this study is to automatically generate situation-sensitive captions that can express implicit intentions based on the behavior and sound of cats by embedding the already mature behavioral detection technology of pets as basic element technology in the video capturing research. As a pilot project to this end, this paper proposes a high-level capturing system using optical-flow, RGB, and sound information of cat videos. That is, the proposed system uses video datasets collected in an actual breeding environment to extract feature vectors from the video and sound, then through hierarchical LSTM encoder and decoder, to identify the cat's behavior and its implicit intentions, and to perform learning to create context-sensitive captions. The performance of the proposed system was verified experimentally by utilizing video data collected in the environment where actual cats are raised.

Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process- (공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용-)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF

Speaker Separation Based on Directional Filter and Harmonic Filter (Directional Filter와 Harmonic Filter 기반 화자 분리)

  • Baek, Seung-Eun;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.125-136
    • /
    • 2005
  • Automatic speech recognition is much more difficult in real world. Speech recognition according to SIR (Signal to Interface Ratio) is difficult in situations in which noise of surrounding environment and multi-speaker exists. Therefore, study on main speaker's voice extractions a very important field in speech signal processing in binaural sound. In this paper, we used directional filter and harmonic filter among other existing methods to extract the main speaker's information in binaural sound. The main speaker's voice was extracted using directional filter, and other remaining speaker's information was removed using harmonic filter through main speaker's pitch detection. As a result, voice of the main speaker was enhanced.

  • PDF

Irregular Sound Detection using the K-means Algorithm (K-means 알고리듬을 이용한 비정상 사운드 검출)

  • Lee Jae-yeal;Cho Sang-jin;Chong Ui-pil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.341-344
    • /
    • 2004
  • 발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.

  • PDF

Development and Implementation of Noise-Canceling Technology for Digital Stethoscope (디지털 청진기를 위한 잡음 제거 기술 개발 및 구현)

  • Lee, Keunsang;Ji, Youna;Jeon, Youngtaek;Park, Young Chool
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.204-211
    • /
    • 2013
  • In this paper, an algorithm for suppressing acoustic noises contained in stethoscope sound is proposed and implemented in real-time using an embedded DSP system. Sound collected by stethoscope is down-sampled and band-pass filtered, and later an NLMS adaptive filter is used to cancel the acoustic noise induced from external noise sources. Also, the unpredictable impulsive noises due to fabric friction and instantaneous tapping are detected using the SD-ROM algorithm, and suppressed using an algorithm approximating the morphology filter. The proposed algorithm was tested using signals collected with a digital stethoscope mockup, and implemented on an ARM920T-based DSP system.