• Title/Summary/Keyword: Sound Camera

Search Result 107, Processing Time 0.022 seconds

The Implementation of Video Library using VR (가상현실을 이용한 동화상 도서관의 구현)

  • 김동현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1456-1461
    • /
    • 2003
  • Recently, the quantity of using information go on increasing geometric-progression. At the same time, the management of information is effected on the most organization's effective operation so that many user call for the powerful equipment which expound. access more information. As information searching technology is concentrated about the object of information based on a letter mainly, an effective searching technology for the object of multimedia such as a still image, a video and a sound must be studied. As a monitor of computer is 2-D, it difficult for one to grasp the whole aspect at a look glance like a library. Accordingly, some condition is necessary. First, it acquired the virtual video, turning a camera around by 30 degrees with a camera of 15mm lens, giving a warping and distortion. Second, it improved the books for user to search easily, adding to the video in existing books information system. The original text suggests some way which can embody the video searching technology under the base of personal computer.

System Development for Measuring Group Engagement in the Art Center (공연장에서 다중 몰입도 측정을 위한 시스템 개발)

  • Ryu, Joon Mo;Choi, Il Young;Choi, Lee Kwon;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.45-58
    • /
    • 2014
  • The Korean Culture Contents spread out to Worldwide, because the Korean wave is sweeping in the world. The contents stand in the middle of the Korean wave that we are used it. Each country is ongoing to keep their Culture industry improve the national brand and High added value. Performing contents is important factor of arousal in the enterprise industry. To improve high arousal confidence of product and positive attitude by populace is one of important factor by advertiser. Culture contents is the same situation. If culture contents have trusted by everyone, they will give information their around to spread word-of-mouth. So, many researcher study to measure for person's arousal analysis by statistical survey, physiological response, body movement and facial expression. First, Statistical survey has a problem that it is not possible to measure each person's arousal real time and we cannot get good survey result after they watched contents. Second, physiological response should be checked with surround because experimenter sets sensors up their chair or space by each of them. Additionally it is difficult to handle provided amount of information with real time from their sensor. Third, body movement is easy to get their movement from camera but it difficult to set up experimental condition, to measure their body language and to get the meaning. Lastly, many researcher study facial expression. They measures facial expression, eye tracking and face posed. Most of previous studies about arousal and interest are mostly limited to reaction of just one person and they have problems with application multi audiences. They have a particular method, for example they need room light surround, but set limits only one person and special environment condition in the laboratory. Also, we need to measure arousal in the contents, but is difficult to define also it is not easy to collect reaction by audiences immediately. Many audience in the theater watch performance. We suggest the system to measure multi-audience's reaction with real-time during performance. We use difference image analysis method for multi-audience but it weaks a dark field. To overcome dark environment during recoding IR camera can get the photo from dark area. In addition we present Multi-Audience Engagement Index (MAEI) to calculate algorithm which sources from sound, audience' movement and eye tracking value. Algorithm calculates audience arousal from the mobile survey, sound value, audience' reaction and audience eye's tracking. It improves accuracy of Multi-Audience Engagement Index, we compare Multi-Audience Engagement Index with mobile survey. And then it send the result to reporting system and proposal an interested persons. Mobile surveys are easy, fast, and visitors' discomfort can be minimized. Also additional information can be provided mobile advantage. Mobile application to communicate with the database, real-time information on visitors' attitudes focused on the content stored. Database can provide different survey every time based on provided information. The example shown in the survey are as follows: Impressive scene, Satisfied, Touched, Interested, Didn't pay attention and so on. The suggested system is combine as 3 parts. The system consist of three parts, External Device, Server and Internal Device. External Device can record multi-Audience in the dark field with IR camera and sound signal. Also we use survey with mobile application and send the data to ERD Server DB. The Server part's contain contents' data, such as each scene's weights value, group audience weights index, camera control program, algorithm and calculate Multi-Audience Engagement Index. Internal Device presents Multi-Audience Engagement Index with Web UI, print and display field monitor. Our system is test-operated by the Mogencelab in the DMC display exhibition hall which is located in the Sangam Dong, Mapo Gu, Seoul. We have still gotten from visitor daily. If we find this system audience arousal factor with this will be very useful to create contents.

A Study of the Seocheon Fireball Explosion on September 23, 2020 (2020년 9월 23일 서천 화구 폭발 관측 연구)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.688-699
    • /
    • 2021
  • On September 23, 2020, at 1:39 a.m., a bright fireball above Seocheon was observed across the country. Two fireball explosions were identified in the images of the All-Sky Camera (ASC), and the shock waves were recorded at seismic and infrasound stations in the southwestern Korean Peninsula. The location of the explosion was estimated by a Bayesian-based location method using the arrival times of the fireball-associated seismic and infrasound signals at 17 stations. Realistic azimuth- and rang-dependent propagation speeds of sound waves were incorporated into the location method to increase the reliability of the results. The location of the sound source was found to be 36.050°N, 126.855°E at an altitude of 35 km, which was close to the location of the second fireball explosion. The two explosions were identified as sequential infrasound arrivals at local infrasound stations. Simulations of waveforms for long ranges explain the detection results at distant infrasound stations, up to ~266 km from the sound source. The dominant period of the signals recorded at five infrasound stations is about 0.4 s. A period-energy relation suggests the explosion energy was equivalent to ~0.3 ton of TNT.

DEVELOPMENT OF DIGITAL IMAGING FIBER-OPTIC TRANS-ILLUMINATION SYSTEM (Digital Imaging Fiber-Optic Trans-Illumination System 개발)

  • Lee, Sang-Min;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.199-208
    • /
    • 2009
  • This study was performed to improve the conventional $DIFOTI^{TM}$ system(EOS Inc., USA) by developing the prototype of DIFOTI system which consists of light emitting diode(LED) and digital camera. The images of enamel surfaces treated under Carbopol 907 de-mineralizing solution were taken daily during 7 days of experimental periods by both DIFOTI systems. The results of comparative analyses of obtained images can be summarized as follows: 1. Trans-illumination indices of images taken from sample enamel surfaces were decreased with time in both systems. 2. The difference of intensity of luminance between sound and de-mineralized enamel surface in prototype DIFOTI system was shown to be relatively smaller than conventional $DIFOTI^{TM}$ system. The application of LED light source in prototype DIFOTI system could possibly reduce the amount of current consumption and that could ultimately lead us to the successful development of wireless model with battery. The innovative development of digital camera is undoubtedly expected to create much clearer image despite of wireless transfer. LED and digital camera can be combined into a smaller size but a very important task of improving image manager and analyzing program into a simpler and easier one to manipulate has to be solved.

  • PDF

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

Study on Bruise Detection of 'Fuji' apple using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 '후지' 사과의 멍 검출에 관한 연구)

  • Cho, Byoung-Kwan;Baek, In-Suck;Lee, Nam-Geun;Mo, Chang-Yeun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.484-490
    • /
    • 2011
  • Defects exist underneath the fruit skin are not easily discernable by using conventional color imaging technique in the visible wavelength ranges. Development of sensitive detection methods for the defects is necessary to ensure accurate quality sorting of fruits. Hyperspectral imaging techniques, which combine the features of image and spectroscopy to acquire spatial and spectral information simultaneously, have demonstrated good potentials for identifying and detecting anomalies on biological substances. In this study, a high spatial resolution hyperspectral reflectance technique was presented as a tool for detecting bruises on apple. The two-band ratio (494 nm / 952 nm) and simple threshold methods were applied to investigate the feasibility of discriminating the bruises from sound tissue of apple. The pixel wise accuracy of the discrimination was 74%. The resultant images processed with selected wavebands and morphologic algorithm distinctively showed the early stages of bruises on apple which were not discernable by naked eyes as well as a conventional color camera. Results demonstrated good potential of the hyperspectral reflectance imaging for detection of bruises on apple.

A STUDY ON WELD POOL MONITORING IN PULSED LASER EDGE WELDING

  • Lee, Seung-Key;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.595-599
    • /
    • 2002
  • Edge welding of thin sheets is very difficult because of the fit-up problem and small weld area In laser welding, joint fit-up and penetration are critical for sound weld quality, which can be monitored by appropriate methods. Among the various monitoring systems, visual monitoring method is attractive because various kinds of weld pool information can be extracted directly. In this study, a vision sensor was adopted for the weld pool monitoring in pulsed Nd:YAG laser edge welding to monitor whether the penetration is enough and the joint fit-up is within the requirement. Pulsed Nd:YAG laser provides a series of periodic laser pulses, while the shape and brightness of the weld pool change temporally even in one pulse duration. The shutter-triggered and non-interlaced CCD camera was used to acquire a temporally changed weld pool image at the moment representing the weld status well. The information for quality monitoring can be extracted from the monitored weld pool image by an image processing algorithm. Weld pool image contains not only the information about the joint fit-up, but the penetration. The information about the joint fit-up can be extracted from the weld pool shape, and that about a penetration from the brightness. Weld pool parameters that represent the characteristics of the weld pool were selected based on the geometrical appearance and brightness profile. In order to achieve accurate prediction of the weld penetration, which is nonlinear model, neural network with the selected weld pool parameters was applied.

  • PDF

A Mobile App(See&Speech) of Correcting Pronunciation for Hearing-Impaired Persons (청각장애인을 위한 발음교정 모바일 앱-See&Speech)

  • Lee, Youngjoo;Lim, Saemi;Choi, Youjin;Moon, Bonghee
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • A person with defects and the lack of hearing, has very difficult problems to listen to the sound of conversation or environment, and these problems cause wrong directions in the linguistic sense and character. We designed and implemented an application to practice and correct pronunciation of a hearing-impaired person specially. This is made as a mobile app without the limitation of time and space, and this provides practices with the level of difficulty in learning of pronunciation, taking into consideration of remedial status in pronunciation. The hearing-impaired person can train the basic pronunciation and the word pronunciation. He or she can practice basic skills in pronunciation and check the record on the practice rate and the success rate. Also, the person can improve pronunciation by self-correction function using the front camera of a smart phone.

Defect Detection in Friction Stir Welding by Online Infrared Thermography

  • Kryukov, Igor;Hartmann, Michael;Bohm, Stefan;Mund, Malte;Dilger, Klaus;Fischer, Fabian
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2014
  • Friction Stir Welding (FSW) is a complex process with several mutually interdependent parameters. A slight difference from known settings may lead to imperfections in the stirred zone. These inhomogeneities affect on the mechanical properties of the FSWed joints. In order to prevent the failure of the welded joint it is necessary to detect the most critical defects non-destructive. Especially critical defects are wormhole and lack of penetration (LOP), because of the difficulty of detection. Online thermography is used process-accompanying for defect detecting. A thermographic camera with a fixed position relating to the welding tool measures the heating-up and the cool down of the welding process. Lap joints with sound weld seam surfaces are manufactured and monitored. Different methods of evaluation of heat distribution and intensity profiles are introduced. It can be demonstrated, that it is possible to detect wormhole and lack of penetration as well as surface defects by analyzing the welding and the cooling process of friction stir welding by passive online thermography measurement. Effects of these defects on mechanical properties are shown by tensile testing.