A sort sequence $S_n$ is a sequence of all unordered pairs of indices in $I_n\;=\;{1,\;2,v...,\;n}$. With a sort sequence Sn we assicuate a sorting algorithm ($AS_n$) to sort input set $X\;=\;{x_1,\;x_2,\;...,\;x_n}$ as follows. An execution of the algorithm performs pairwise comparisons of elements in the input set X as defined by the sort sequence $S_n$, except that the comparisons whose outcomes can be inferred from the outcomes of the previous comparisons are not performed. Let $X(S_n)$ denote the acverage number of comparisons required by the algorithm $AS_n$ assuming all input orderings are equally likely. Let $X^{\ast}(n)\;and\;X^{\circ}(n)$ denote the minimum and maximum value respectively of $X(S_n)$ over all sort sequences $S_n$. Exact determination of $X^{\ast}(n),\;X^{\circ}(n)$ and associated extremal sort sequenes seems difficult. Here, we obtain bounds on $X^{\ast}(n)\;and\;X^{\circ}(n)$.
A sort sequence $S_n$ is sequence of all unordered pairs of indices in $I_n$={1,2,…n}. With a sort sequence $S_n$ = ($s_1,S_2,...,S_{\frac{n}{2}}$),one can associate a predictive sorting algorithm A($S_n$). An execution of the a1gorithm performs pairwise comparisons of elements in the input set X in the order defined by the sort sequence $S_n$ except that the comparisons whose outcomes can be inferred from the results of the preceding comparisons are not performed. A sort sequence is said to be extremal if it maximizes a given objective function. First we consider the extremal sort sequences with respect to the objective function $\omega$($S_n$) - the expected number of tractive predictions in $S_n$. We study $\omega$-extremal sort sequences in terms of their prediction vectors. Then we consider the objective function $\Omega$($S_n$) - the minimum number of active predictions in $S_n$ over all input orderings.
버블정렬 그래프는 노드 대칭이며 데이터 정렬 알고리즘에 활용 할 수 있다. 본 연구에서는 버블정렬 그래프의 망 비용을 개선한 하프 버블정렬 그래프를 제안하고 분석한다. 하프 버블정렬 그래프 $HB_n$의 노드수는 n!이고 분지수는 ${\lfloor}n/2{\rfloor}+1$이다. 하프 버블정렬 그래프의 분지수는 버블정렬 그래프의 분지수의 $${\sim_=}0.5$$배 이고, 지름은 $${\sim_=}0.9$$배 이다. 버블정렬 그래프의 망 비용은 $${\sim_=}0.5n^3$$이고, 하프 버블정렬 그래프의 망 비용은 $${\sim_=}0.2n^3$$이다. 하프 버블정렬 그래프는 버블정렬 그래프의 서브 그래프임을 증명하였다. 추가로 라우팅 알고리즘을 제안하였고 지름을 분석하였다. 마지막으로 버블정렬 그래프와 망 비용을 비교 하였다.
본 논문에서는 고해상도 타일 가시화 시스템의 성능 향상을 위해 전 분류 기법과 후 분류 기법을 조합하여 두 가지 병렬-타일 가시화 알고리듬을 제안하였다. 전 분류에서는 디스플레이 리스트와 시각 절두체 선별 기법을 이용하였으며, 후 분류에서는 선 탐색 부분 후 분류기법을 이용하였다. 벤치마킹 테스트를 통해 제안된 두 병렬-타일 가시화 기법의 성능을 고찰하였으며, 이 결과를 기반으로 제안된 두 가지 병렬-타일 가시화 알고리듬 중에서 주어진 가시화 모델에 대해 더 효율적인 알고리듬을 선정하는 방안을 제시하였다.
본 논문에서는 O(NlogN) 의 시간 복잡도와 데이터의 분포상태에 영향을 받지 않는 정보블록 정렬알고리즘(IBSA : Information Block Sort Algorithm)을 제안하고, 시뮬레이터를 이용하여 그 성능을 평가하였다. 2백만 개의 랜덤 데이터를 이용하여 IBSA의 성능을 측정해본 결과, 퀵 정렬의 22%, 개선된 퀵 정렬의 36% 정도의 비교회수만으로도 정렬할 수 있음을 보여주었다.
정렬 알고리즘에서 사용한 원소 간 비교횟수를 기준으로, 비교횟수가 많게 되는 순열을 최악의 인스턴스(worst-case instance)라 명명하고 이를 찾기 위해 유전 알고리즘(genetic algorithm)을 사용하였다. 잘 알려진 퀵 정렬(quick sort), 머지 정렬(merge sort), 힙 정렬(heap sort), 삽입 정렬(insertion sort), 쉘 정렬(shell sort), 개선된 퀵 정렬(advanced quick sort)에 대해서 실험하였다. 머지 정렬과 삽입 정렬에 대해 탐색한 인스턴스는 최악의 인스턴스에 거의 근접하였다. 퀵 정렬은 크기가 증가함에 따라 최악의 인스턴스 탐색이 어려웠다. 나머지 정렬에 대해서 찾은 인스턴스는 최악의 인스턴스인지 이론적으로 보장할 수 없지만, 임의의 1,000개 순열을 정렬해서 얻은 비교횟수들의 평균치보다는 훨씬 높았다. 본 논문의 최악의 인스턴스를 탐색하는 시도는 알고리즘의 성능 검증을 위한 테스트 데이터를 생성한다는 점에서 의미가 크다.
일반적으로 GPU 기반 트리 탐색을 수행할 경우 병렬 처리 속도가 생각보다 크게 향상되지 않는 경우가 대부분이다. 본 논문에서는 이러한 원인을 분석하고 그 분석 결과로 GPU 병렬 처리 하드웨어 아키텍처 내 최소 물리적 스레드 실행 단위인 warp 내에서 분기문(if문)으로 인한 warp divergence가 일어나기 때문임을 제시한다. 또한 이러한 warp divergence를 최소화할 수 있는 병렬 shifted sort 알고리즘과의 비교를 통해 shifted sort 알고리즘이 일반적인 GPU 내 트리 탐색에 비해 우수한 성능을 보이는 구조임을 제시하였다. 분석 결과 GPU 기반 kd-tree 탐색에 비해 warp divergence가 발생하지 않은 shifted sort 탐색은 3차원 공간에서 데이터나 쿼리의 수가 $2^{23}$개 일 때 16배 이상의 빠른 처리 속도를 보였으며 이 성능 차이는 데이터나 쿼리의 개수가 증가함에 따라 더 커지는 경향을 보였다.
거대한 데이터로부터 가치 있는 정보를 추출해 내는 빅데이터 기술의 필요성은 나날이 커지고 있다. 빅데이터 분석을 위해 사용되는 하둡 시스템은 맵리듀스를 통해 데이터를 처리하였으나, 맵리듀스 프레임워크는 코드 재사용성의 한계, 질의 최적화 기술의 부재 등의 단점을 보인다. 이를 극복하기 위해 SQL-on-Hadoop이라 불리는 하둡 기반의 SQL 질의 처리 기술이 주목받고 있다. SQL-on-Hadoop 기술 중 타조(Tajo)는 국내 개발진이 주축이 되어 개발되었다. 타조는 데이터 분석을 위해 외부합병정렬 알고리즘을 사용하며, 정렬 연산에 영향을 주는 매개변수로 정렬 버퍼 사이즈와 팬-아웃을 가진다. 본 논문은 타조의 정렬 연산에 영향을 미치는 매개변수인 정렬 버퍼 사이즈와 팬-아웃 값에 따른 정렬의 성능 차이를 보인다. 또한 측정한 성능에 대하여 정렬 버퍼 사이즈가 증가함에 따른 CPU 캐시 미스의 비율 증가, 팬-아웃에 따른 합병 단계 수의 변화가 성능 차이의 원인임을 보인다.
본 연구에서는 YOLOX와 OC-SORT를 기반으로 한 소 행동 인식시스템을 제시하였다. YOLOX는 실시간으로 목표를 감지하고 소의 위치와 행동 정보를 제공한다. OC-SORT 모듈은 비디오에서 소를 추적하고 고유 ID를 할당하는 역할을 한다. 양적 분석 모듈은 소의 행동과 위치 정보를 분석한다. 실험 결과, 우리의 시스템은 목표 감지와 추적에서 높은 정확도와 정밀도를 보여주었다. YOLOX의 평균 정확도(AP)는 82.2%, 평균 재현율(AR)는 85.5%, 매개변수 양은 54.15M, 계산량은 194.16GFLOP이었다. OC-SORT는 복잡한 환경과 가림막 상황에서도 높은 정밀도의 실시간 목표 추적을 유지할 수 있었다. 소의 운동 변화와 승가행동의 빈도를 분석함으로써, 제안 시스템은 소의 발정 행동을 더 정확하게 판별하는데 도움을 줄 수 있다.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.197-204
/
2022
Sorting is an important data structure in many applications in the real world. Several sorting algorithms are currently in use for searching and other operations. Sorting algorithms rearrange the elements of an array or list based on the elements' comparison operators. The comparison operator is used in the accurate data structure to establish the new order of elements. This report analyzes and compares the time complexity and running time theoretically and experimentally of insertion, merge, and heap sort algorithms. Java language is used by the NetBeans tool to implement the code of the algorithms. The results show that when dealing with sorted elements, insertion sort has a faster running time than merge and heap algorithms. When it comes to dealing with a large number of elements, it is better to use the merge sort. For the number of comparisons for each algorithm, the insertion sort has the highest number of comparisons.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.