• Title/Summary/Keyword: Sorption Property

Search Result 55, Processing Time 0.034 seconds

Electrochemical Anodic Formation of VO2 Nanotubes and Hydrogen Sorption Property

  • Lee, Hyeonkwon;Jung, Minji;Oh, Hyunchul;Lee, Kiyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.212-216
    • /
    • 2021
  • We investigated the feasibility of hydrogen storage with electrochemically formed VO2 nanotubes. The VO2 nanotubes were fabricated through the anodization of vanadium metal in fluoride ion-containing organic electrolyte followed by an annealing process in an Ar-saturated atmosphere at 673 K for 3 h at a heating rate of 3 K /min. During anodization, the current density significantly increased up to 7.93 mA/cm2 for approximately 500 s owing to heat generation, which led to a fast-electrochemical etching reaction of the outermost part of the nanotubes. By controlling the anodization temperature, highly ordered VO2 nanotubes were grown on the metal substrate without using any binders or adhesives. Furthermore, we demonstrated the hydrogen sorption properties of the anodic VO2 nanotubes.

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

Study on Physical Properties of Domestic Species II: Sorption, Thermal, Electrical and Acoustic Properties of Pinus koraiensis and Larix kaempferi (국산재의 응용물성연구II: 잣나무 낙엽송의 수분흡착성 및 열적·전기적·음향적 성질)

  • Byeon, Hee-Seop;Lee, Won-Hee;Park, Byung-Soo;Chong, Sung-Ho;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • A series of the studies on the applied physical properties of domestic species have been conducted last three years. Pinus koraiensis and Larix kaempferi were two of the three species examined for the first year. Because the same apparatus and experimental procedures were used for all species, their results can be easily comparable. The experiments for sorption property were conducted with 20- and 80-mesh wood powder and resulted in their EMCs and sorption isotherms at various RH conditions. The thermal conductivity and diffusivity, and electric resistance and volumetric electric resistivity were measured with a thermal-wire device and a high electric resistance meter. The differences in the thermal and electric properties between quarter- and flat-sawn specimens were observed, which were partially attributed to their anatomical differences. An acoustic measurement system was used to evaluate dynamic MOE and internal friction. This paper provides the useful fundamental data for designing a wood structure, correcting a portable resistance-type moisture meter, and acoustic properties of wood.

Study on Physical Properties of Domestic Species I: Sorption, Thermal, Electrical and Acoustic Properties of Pinus Densiflora (국산재의 응용물성연구 I: 소나무(Pinus densiflora)의 수분흡착성 및 열적·전기적·음향적 성질)

  • Kang, Ho-Yang;Byeon, Hee-Seop;Lee, Won-Hee;Park, Byung-Soo;Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.70-84
    • /
    • 2008
  • A series of the studies on the applied physical properties of domestic species have been conducted last three years. Pinus densiflora was one of the three species examined for the first year. Because the same apparatus and experimental procedures were used for all species, their results can be easily comparable. The experiments for sorption property were conducted with 20- and 80-mesh wood powder and resulted in their EMC's and sorption isotherms at various heating conditions. The thermal conductivity and diffusivity, and electric resistance and volumetric electric resistivity were measured with a thermal-wire device and a high electric resistance meter. The differences of the thermal and electric properties between quarter- and flat-sawn specimens were observed, which was partially attributed to their anatomical differences. An acoustic measurement system was used to evaluate dynamic MOE and internal friction. This paper provides the useful fundamental data for designing a wood structure, correcting a portable resistance-type moisture meter, and nondestructive testing wood.

Sorption property of fibrous assembly with its fabrication characteristics and various materials (섬유집합체의 구조적 특성 및 소재가 흡수성에 미치는 영향)

  • 이재형;임대영;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.219-222
    • /
    • 2002
  • 의류, 타월, 와이퍼 등 대부분의 섬유제품은 수분을 흡수하는 능력이 요구되는데, 여기에서 흡수란 고체 표면에 부착되어 있던 비교적 점성이 낮은 액상 물질, 즉 물 및 용제류 등이 섬유 집합체의 표면에 젖으면서 모세관현상에 의해 표면으로부터 내부로 이동한 다음 방출되지 않고 그 상태를 유지하는 현상을 말한다. 이러한 섬유집합체의 흡수 특성을 정확히 규정하기 위해서는 실제와 같은 상황에서 정확하게 흡수 속도와 흡수량을 측정할 수 있는 방법이 요구되는데 기존의 실험 방법들은 미흡한 점이 다소 있었다. (중략)

  • PDF

THE STUDY ON THE PHYSICAL PROPERTY OF THE PERMANENT SOFT DENTURE LINERS (영구 연성 의치상 이장재의 물리적 성질에 관한 연구)

  • Kim, Yeon-Mi;Bae, Jeong-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.809-818
    • /
    • 1999
  • This study was performed to evaluate the tensile bond strength and modulus of elasticity of three permanent soft denture liners (Molloplast $B^{(R)}$, Ufi Gel $C^{(R)},\;Tokuyama^{(R)}$) before and after thermocycling. And their water sorption were also evaluated. Each soft denture liner was bonded to PMMA denture base resin blocks and the tensile bond strength and modulus of elasticity were measured by using universal testing machine. For the water sorption, weight measured after immersion of sea denture liners in $37{\pm}1^{\circ}C$ water bath for 4 weeks. The results were as follows : 1. Molloplast $B^{(R)}$ had the highest tensile bond strength, while Tokuyama had the lowest tensile bond strength. There was no significant difference between $Tokuyama^{(R)}$ and Molloplast $B^{(R)}$ in the both nonthermocycling and thermocycling. There was significant difference in tensile strength of $Tokuyama^{(R)}$ before and after thermocycling(p<0.05). 2. For the modulus of elasticity, there was no significant difference between Ufi Gel $C^{(R)}\;and\;Tokuyama^{(R)}$ in the both nonthermocycling and thermocycling. There was significant difference in modulus of elasticity of $Tokuyama^{(R)}$ before and after thermocycling(p<0.05). 3 The failure modes of Molloplast $B^{(R)}$ and Ufi Gel $C^{(R)}$ were mainley adhesive type and that of $Tokuyama^{(R)}$ was mainly mixed type in case of nonthermocycling and cohesive type after thermocycling. 4. The water sorption of each soft liners was within ${\pm}2%$ in times (p<0.05) but. there was no significant difference among the soft liners in times.

  • PDF

Removal of Methylene Blue by Modified Carbon Prepared from the Sambucus Nigra L. plant

  • Manoochehri, Mahboobeh;Amooei, Khadijeh
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. In this research the potentialities of Sambucus nigra L. (SNL) plant in the remediation of water, contaminated with methylene blue (MB), a basic dye were investigated. SNL was chemically impregnated with $KHCO_3$. Operating variables studied were pH, amount of adsorbent and contact time. In general, pH did not have any significant effect on colour removal and the highest adsorption capacity was obtained in 0.035 g MB/g-activated carbon. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption models were applied to describe the equilibrium isotherms. The adsorption isotherm data were fitted to the Temkin isotherm. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order and chemisorption pseudo-second-order kinetic models. The sorption process obeyed the pseudo-second-order kinetic model. The surface area, pores volume and diameter were assessed by the Brunauer-Emmett-Teller and Barrett-Joyner-Halenda methods. The results were compared to those from activated carbon (Merck) and an actual sample. The results indicate that SNL can be employed as a natural and eco-friendly adsorbent material for the removal of dye MB from aqueous solutions.

Kinetics of Water Vapor Absorption by Sodium Alginate-based Films

  • Seog, Eun-Ju;Zuo, Li;Lee, Jun-Ho;Rhim, Jong-Whan
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • Water vapor sorption by sodium alginate-based films may result in swelling and conformational changes in the molecular structure and affecting the water vapor barrier properties. Sodium alginate film specimens were dried in a vacuum freeze dryer and their moisture content was determined by an air-oven method. The water vapor absorption was determined at two different levels of water activities (0.727 and 0.995) and at three temperatures (10, 20, and $30^{\circ}C$), and kinetics were analyzed using a simple empirical model. Reasonably good straight lines were obtained with plotting of 1/($m-m_0$) vs 1/t. It was found that water vapor absorption kinetics of sodium alginate films were accurately described by a simple empirical model. The rate of water vapor sorption increased with increase in temperature and it showed temperature dependency following the Arrhenius equation. The activation energies varied from 49.18$\sim$149.55 kJ/mol depending on the relative humidity.

Hydrogen Storage Property Comparison of Pure Mg and Iron (III) Oxide-Added Mg Prepared by Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.383-387
    • /
    • 2012
  • The activation of Mg-10 wt%$Fe_2O_3$ was completed after one hydriding-dehydriding cycle. Activated Mg-10 wt%$Fe_2O_3$ absorbed 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$, and desorbed 1.04 wt% H for 60 min at 593 K under 1.0 bar $H_2$. The effect of the reactive grinding on the hydriding and dehydriding rates of Mg was weak. The reactive grinding of Mg with $Fe_2O_3$ is believed to increase the $H_2$-sorption rates by facilitating nucleation (by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. The added $Fe_2O_3$ and the $Fe_2O_3$ pulverized during mechanical grinding are considered to help the particles of magnesium become finer. Hydriding-dehydriding cycling is also considered to increase the $H_2$-sorption rates of Mg by creating defects and cracks and by reducing the particle size of Mg.

Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead (키토산비드를 이용한 양이온/음이온의 흡착모델 적용)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).