• Title/Summary/Keyword: Soot measurement

Search Result 83, Processing Time 0.022 seconds

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

Effect of Nozzle Hole Number on Fuel Spray and Emission Characteristics of High Pressure Diesel Injector (고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향)

  • Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.210-215
    • /
    • 2012
  • This paper This paper presents effect of nozzle hole number on spray characteristics and engine performance. Experiments were conducted to measure spray penetration and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. In addition, engine performance and emission characteristics were measured using a single cylinder engine and emssion measurement systems. Results showed that 8-hole-injector exhibits improved spray performances. Furthermore, soot emission was decreased with 8-hole-injector, compared to that of 6-hole-injector.

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Cha, Ok-Hwan;Jeong, Mun-Seok;Byeon, Clare C.;Jeong, Hyun;Han, Jong-Hun;Choi, Young-Chul;An, Kay-Hyeok;Oh, Kyung-Hui;Kim, Ki-Kang;Lee, Young-Hee
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • We propose an evaluation method of the relative content of single-walled carbon nanotubes (SWCNT) in SWCNT soot synthesized by arc discharge using UV-VIS-NIR absorption spectroscopy. In this method, we consider the absorbance of semiconducting and metallic SWCNTs together to calculate the relative content of SWCNTs with respect to a highly purified reference. Our method provides the more reliable and realistic evaluation of SWCNT content with respect to the whole carbonaceous content than the previously reported method.

Measurement of soot concentration in flames using laser-induced incandescence method (이중 동축 확산화염의 형상 및 배출 특성)

  • Jurng, Jong-Soo;Lee, Gyo-Woo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • An experimental study on double-concentric diffusion flame has been carried out in order to investigate the shape, the flame length, and the other characteristics of the flame. Flow visualization of the flame by the $TiO_2$ particles and also the emission measurements are conducted. The commercial grade LP gases are used as fuel. The inverse diffusion flames are formed at the center when the central air flow rate is about 0.1 L/min. With a larger flow rate of the central air jet than 0.2 L/min the flame turns to be an annular-shaped flame, which is very bright. When the central air flow rate increases over 2.4 L/min, the flame turns to blue and the flame tips are opened because of the lifting of the inner part of the flame. Because of this lifting and the incomplete combustion, the CO emission increases abruptly from 25 ppm to more than 150 ppm. On the contrary, the NOx emission is decreased.

  • PDF

Analysis of the change in appearance according to the hardening method of leather (가죽의 경화방법에 따른 외형변화 분석)

  • Youshin, Park
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.122-134
    • /
    • 2022
  • This study is conducted on hardening leather with improved firmness and stability of shape, based on research on types and thickness of leather. The purpose of this study is to test the physical properties of the leather for molding to prepare the foundation for leather molding based on the test results using four methods by thickness of Vegetable and Split. The tests were conducted using a total of five leather types, including three types of vegetable leathers and two types of split, by thickness. Based on the testing method for leathers in KS M 6882, the tests were performed at 27℃ with relative humidity of 65±20%. The samples were prepared with cowhide, size 9cm× 2cm. The measurement parameters are length and width. thickness, volume, mass, density. Regarding the hardening treatment method, changes in appearance and major physical characteristics of leather were reviewed by soaking in hot water, dry heating, hammering, waxing, and olive oil coating. The study results are as follows. In planar works, it is judged that hardening work using a hammer is more suitable for stiffness or density in order to prevent easy breakage with adult muscle density, rather than boiling water or baking. In conclusion, there is no curling, soot, or breaking phenomenon, and the densest curing method is 50℃ for 20 sec of V2 and 75℃ for 60 sec of V2 in boiling water. The combination of paraffin treatment improve waterproof and quality.

An Analysis on the Emission Reduction Effect of Diesel Light-duty Truck by Introducing Electronic Toll Collection System on Highways (고속도로 영업소의 자동 요금 징수 시스템 도입에 따른 소형 경유 화물트럭의 배출가스 저감 효과 분석)

  • Park, Junhong;Lee, Jongtae;Lee, Taewoo;Kim, Jiyoung;Kim, Jeongsoo;Kil, Jihoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.506-517
    • /
    • 2012
  • Electronic Toll Collection System (ETCS), so called "Hi-Pass" in Korea, has improved traffic flow at toll gate of highways. It is known that the improvement of traffic flow should reduce air pollutants and $CO_2$ from vehicles. In this study, real driving emission of a light duty truck with Portable Emission Measurement System(PEMS) has been measured to evaluate the emission reduction effect due to ETCS. The correlations between driving variables and emissions have been analyzed to verify its effect on traffic flow improvement and emission reduction at toll gate. We considered average vehicle speed, Relative Positive Acceleration (RPA), and the distance of queue as driving variables. Compared to passing Manual Toll Collection System (MTCS) lane without queue, ETCS was able to reduce 38.7% of $NO_x$, 21.6% of soot, and 27.7% of $CO_2$. The results showed that the higher the average vehicle speed, the lower RPA and no queue in ETCS contributed to the emission reductions. Linear equation models with RPA and queue have been established by the multiple linear regression method. The linear models resulted in the higher coefficient of determination than those with only average vehicle speed used for establishing vehicle emission factors.

Effect of Payload on Fuel Consumption and Emission of Light Duty Freight Truck during Acceleration Driving (소형 화물 차량의 적재량이 가속 주행 시의 연비 및 오염물질 배출에 미치는 영향)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Jeon, Sang-Jin;Park, Jun-Hong;Lee, Jong-Tae;Hong, Ji-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • The effect of payload on fuel consumption and emission of light duty freight truck during acceleration driving has been analyzed. Running tests were carried out with various payload conditions on chassis dynamometer. A typical driving pattern for urban cities was used. Real time emission measurement systems for gaseous and soot emission were utilized to investigate the real time dynamic of fuel use and exhaust emissions. It was observed that fuel use and pollutant emissions were increased as payload was increased. Under the same payload condition, the increased amount of acceleration driving is much higher than that of steady state driving. The results demonstrated the advantages of eco-driving, which is an environmentally friendly driving manner, could be emphasized in heavier payload condition. Inertial tractive power was introduced for considering the parameters affecting emission during acceleration driving, which are speed, acceleration and payload. Fuel use and emission in various driving conditions were expressed as functions of inertial tractive power. The estimated result by these functions well predicted measured result within 10 % deviation.

Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer (광음향 및 네펠로미터 방식을 이용한 에어로졸 흡수 및 산란계수 측정)

  • Kim, Ji-Hyoung;Kim, Sang-Woo;Heo, Junghwa;Nam, Jihyun;Kim, Man-Hae;Yu, Yung-Suk;Lim, Han-Chul;Lee, Chulkyu;Heo, Bok-Haeng;Yoon, Soon-Chang
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.185-191
    • /
    • 2015
  • Ambient measurements of aerosol light absorption (${\sigma}_a$) and scattering coefficients (${\sigma}_s$) were done at Gosan climate observatory during summer 2008 using a 3-wavelength photoacoustic soot spectrometer (PASS). PASS was deployed photoacoustic method for light absorption and integrated nephelometry for light scattering measurements. The ${\sigma}_a$ and ${\sigma}_s$ from PASS were compared with those from co-located aethalometer and nephelometer measurements. The aethalometer measurements of ${\sigma}_a$ correlated reasonably well with photoacoustic measurements, but the slope of the linear fitting line indicated the PASS measurement values of ${\sigma}_a$ were larger by a factor of 1.53. The nephelometer measurement values of ${\sigma}_s$ correlated very well with PASS measurements of ${\sigma}_s$, with a slope of 1.12 and a small offset. Comparing to the aethalometer measurements, the photoacoustic measurements of ${\sigma}_a$ didn't exhibit a significant (i.e., the ratio between aethalometer and PASS increased) change with increasing relative humidity (RH). The ratio of ${\sigma}_s$ between nephelometer and PASS increased with increasing RH, especially when the RH increased beyond 80%. This apparent increase in ${\sigma}_s$ with RH may be due to the contribution of hygroscopic growth of aerosols.