• 제목/요약/키워드: Sonoreactor

검색결과 8건 처리시간 0.016초

Lrge-Scale 초음파 반응기에서의 내부 초음파 에너지 분포 분석 (Analysis of the Ultrasonic Cavitation Energy in a Large-Scale Sonoreactor)

  • 손영규;임명희;김원장;김지형
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.129-134
    • /
    • 2008
  • Ultrasonic cavitational energy distributions were measured in a large-scale sonoreator. In application of 110 and 170 kHz of ultrasound, the cavitational energy was just detected near the transducer module. However 35 and 72 kHz ultrasound made good distributions from the module to the end of the sonoreactor, Especially, 72 kHz ultrasound application showed most stable and highest cavitational energy value through the whole length. In the comparison between input power and cavitational energy, linear relationships were obtained in 35 and 72 kHz and it was anticipated that these results would be used for the optimization of input power for the design of sonoreactors. And three dimensional energy distribution was depicted through the mapping of cavitaional energy. Average energy in the large-scale sonoreactor was estimated as 62.8 W, which was about 40 % of input power.

하향 초음파 조사 시스템에서의 초음파 화학적 및 물리적 효과 평가 (Sonochemical and Sonophysical Effects in a Downward-Irradiation Sonoreactor)

  • 김슬기;손영규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.23-31
    • /
    • 2020
  • The performance of a downward-irradiation sonoreactor was investigated using calorimetry, KI dosimetry, luminol (Sonochemiluminescence, SCL) method, and aluminium foil erosion method as one of the basic steps for the optimal design of downward-irradiation sonoreactors. The applied frequency was 28 kHz and the input electrical power was 280 - 300 W. The liquid height, from the reactor bottom to the transducer module surface, ranged from 1λ (53.6 mm) to 2λ (107.1 mm). For various liquid heights, the magnitude of calorimetric power and the mass of cavitation-generated I3- ion varied significantly. It was found that the additional application of mechanical mixing resulted in higher sonochemical activity, especially in the cavitational active zone, which was induced by violent liquid flow in the reactor. In aluminium foil erosion tests, it was found that less ultrasound energy reached the bottom of the reactor due to the violent liquid flow and no significant sonophysical effect was observed for higher mixing rate conditions (100 and 200 rpm).

36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석 (The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor)

  • 손영규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

300 kHz 조건에서의 초음파화학적 산화반응에 대한 연속식 가스 주입 효과 (Effect of Gas Sparging on Sonochemical Oxidation in a 300 kHz Sonoreactor)

  • 서지은;손영규
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.642-649
    • /
    • 2018
  • The effect of gas sparging on sonochemical oxidation was investigated in a 300 kHz sonoreactor under various liquid height/volume conditions ($5{\sim}30{\lambda}$, 3.4 ~ 9.0 L), determined by the wavelength of the applied frequency. The electrical input power was maintained constant for all cases . Sonochemical activity drastically decreased from $15{\lambda}$ and the liquid height of $10{\lambda}$ was suggested as the optimal height for 300 kHz without gas sparging. In our previous research, the sonochemical activity observed was five-times higher when air sparging was applied for 36 kHz. On the other hand, no enhancement was obtained at 10, 15, 25 and $30{\lambda}$ using air sparging (1, 3, and 6 L/min) for 300 kHz in this study $20{\lambda}$ and optimization of gas sparging was conducted at $20{\lambda}$ using various gases including air, Ar, $O_2$, $N_2$, and mixtures of Ar and $O_2$. It was found that gas sparging using pure Ar or pure $O_2$ resulted in lower sonochemical activity compared to that of air sparging due to the imbalance between the intensity of cavitation phenomena and the generation of oxidizing radical species. Consequently, the gas mixture of $Ar:O_2$ = 80 % : 20 % (DO saturation ${\approx}100%$) was suggested as an optimal gas sparging condition.

불균일계에서의 초음파 캐비테이션 물리적 및 화학적 효과 연구 (Sonochemial and Sonophysical Effects in Heterogeneous Systems)

  • 이덕영;손영규
    • 한국물환경학회지
    • /
    • 제35권2호
    • /
    • pp.115-122
    • /
    • 2019
  • The objective of this study was to investigate the sonophysical and sonochemical effects induced by acoustic cavitation in heterogeneous systemin a 28 kHz double-bath reactor using calorimetry, the aluminiumfoil erosion test, and the luminol test. With no glass beads, calorimetric power in the inner vessel increased as much as the outer sonoreactor lost and total calorimetric power was maintained for various liquid height conditions (0.5 ~ 7 cm) in the vessel. Higher calorimetric energy was obtained at higher liquid height conditions. Similar results were obtained when glass beads were placed with various beads heights (0.5 ~ 2.0 cm) and relatively high calorimetric energy was obtained in spite of large attenuation in the glass beads layer. An aluminium foil placed between the bottom of the inner vessel and the glass beads layer was damaged, indicating significant sonophysical effects. Much less damage was detected when the foil was placed above the beads layer due to large attenuation of ultrasound. Sonochemical effects, visualized by sonochemiluminescence (SCL), also decreased significantly when the beads were placed in the vessel. It was established that the optimization of the liquid height above the solid-material layer could enhance the sonophysical and sonochemical effects in the double-bath sonoreactors.

알루미늄 호일 부식 실험을 이용한 초음파 토양 세척 공정 개발의 기초 연구 (Optimization of Ultrasonic Soil Washing Processes Using Aluminum Foil Erosion Tests)

  • 김슬기;손영규
    • 대한환경공학회지
    • /
    • 제37권2호
    • /
    • pp.92-98
    • /
    • 2015
  • 알루미늄 호일 부식 실험을 이용하여 초음파 토양 세척 공정의 설계를 위한 기초 연구가 수행되었다. 36 kHz 초음파 발생 모듈이 하부에 장착된 대형 초음파 반응기에 파이렉스 재질의 소형 반응기를 위치시키고 글라스 비드 크기(1, 2, 4 mm), 파이렉스 반응기 내 글라스 비드 높이(5, 10, 15, 20 mm), 글라스 비드 위 물 높이(5, 10, 15, 20 mm) 등의 다양한 조건에서 실험을 진행하였다. 실험 결과, 글라스 비드의 입자 크기가 클수록, 글라스 비드 위 수위가 증가할수록 알루미늄 호일의 부식 정도가 크게 증가하였는데 이는 입자가 클수록 빈 공간이 많이 생겨 초음파 감쇠 현상이 덜 일어나게 되기 때문이며, 또한 수위가 증가할수록 동일한 에너지 유입 조건에서 초음파 캐비테이션 현상이 보다 활성화되기 때문으로 판단되었다. 그러나 글라스 비드를 지나면서 초음파 감쇠 현상이 심하게 일어나 알루미늄 호일의 부식 정도가 상대적으로 매우 약하게 확인되어 부식이 활발하게 일어나는 반응기 하부, 즉 심각한 초음파 감쇠 현상이 일어나지 않는 바닥 부분으로 입자들을 지속적으로 보낼 수 있는 기계적 교반 등의 방안이 제안되었다.

초음파 수처리 공정 개발을 위한 반응기 설계 기초 연구 (Basic Study on the Design and Optimization of Sonoreactors for Sonochemical Water/Wastewater Treatment Processes)

  • 김슬기;손영규
    • 한국습지학회지
    • /
    • 제16권2호
    • /
    • pp.205-212
    • /
    • 2014
  • 본 연구는 환경, 에너지, 재료 등 다양한 분야에 적용할 수 있는 초음파 기술을 수처리 공정에 적용하기 위한 기초 연구로 수행되었다. 초음파 기술과 같은 고도산화처리공법은 중금속, 내분비계장애물질, 의약물질 등의 미량오염물질 처리에 효과적이어서 하천, 호소, 습지의 수질 향상에 크게 기여할 수 있을 것으로 기대되고 있다. 초음파 기술은 파를 기반으로 하기 때문에 본 연구에서는 적용 주파수의 파장을 이용하여 $0{\sim}4{\lambda}$ 구간의 수위를 $1/4{\lambda}$ 간격으로 나누어 동일한 유입에너지 조건에서 발생하는 열에너지 및 초음파 캐비테이션의 화학적 효과를 정량화 하였다. 실험 결과 낮은 수위 (적은 부피)의 에너지 밀도가 높은 조건보다 높은 수위 (큰 부피)의 에너지 밀도가 낮은 조건에서 열에너지 및 화학적 효과가 극대화되는 것을 확인하였다. 이러한 현상을 반응기 내부의 캐비테이션 활성도 시각화를 통해 알아본 결과, 높은 수위 (큰 부피) 조건에서는 에너지 밀도가 낮음에도 불구하고 반응기 전체적으로 높은 활성도를 얻을 수 있기 때문인 것으로 확인되었다. 따라서 본 연구결과를 이용하여 초음파 기술을 수처리 분야에 적용할 경우 반응성 및 에너지 효율 측면에서 적용 가능성을 보다 높일 수 있을 것으로 예상된다.

다양한 액상 수위/부피 조건에서의 300kHz 초음파 캐비테이션 산화반응 분석 연구 (Sonochemical Oxidation Reactions in 300 kHz Sonoreactor for Various Liquid Height/Volume Conditions)

  • 이성은;손영규
    • 한국물환경학회지
    • /
    • 제38권5호
    • /
    • pp.211-219
    • /
    • 2022
  • In this study, the effect of liquid height/volume on sonochemical oxidation reactions was investigated in 300 kHz sonoreactors. The gas mixture of Ar/O2 (50:50) was applied in two modes including saturation and sparging, and zero-order reaction (KI dosimetry) and first-order reaction (Bisphenol A (BPA) degradation) were used to quantitatively analyze sonochemical oxidation reactions. For the zero-order reaction, the highest sonochemical oxidation activity was obtained for the liquid height of 5𝛌, and the lowest height for both the gas saturation and sparging conditions. In addition, the sparging did not enhance the sonochemical oxidation activity for all height conditions except for 50𝛌, where very low activity was obtained. It was found that in sonochemiluminescence (SCL) images the sonochemical active zone was formed adjacent to the liquid surface for the gas sparging condition due to the formation of the standing wave field while the active zone was formed adjacent to the transducer at the bottom due to the blockage of ultrasound. For the first-order reaction, the highest activity was also obtained at 5𝛌 and the comparison based on the reactant mass was not appropriate because the concentration of the reactant (BPA) decreased significantly as the reaction time elapsed. Consequently, it was revealed that the determination of optimal liquid height (ultrasound irradiation distance) based on the wavelength of the applied ultrasound frequency was very important for the optimal design of sonoreactors in terms of reaction efficiency and reactor size.