• Title/Summary/Keyword: Sonochemical method

Search Result 49, Processing Time 0.022 seconds

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Park, Jae-Young;Park, Jong-Pil;Hwang, Cha-Hwan;Kim, Ji-Eon;Choi, Myoung-Ho;Ok, Kang-Min;Kwak, Ho-Young;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2713-2716
    • /
    • 2009
  • $CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.

Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation (초음파 합성법을 이용한 UiO-66의 합성 및 이산화탄소 흡착/자일렌 이성체 분리 연구)

  • Kim, Hee-Young;Kim, Se-Na;Kim, Jun;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.470-475
    • /
    • 2013
  • Zr-benzendicarboxylate structure, UiO-66 was prepared in 1-L batch scale by using a unique sonochemical-solvothermal combined synthesis method. The produced UiO-66 showed uniform particles of ca. $0.2{\mu}m$ in size with the BET surface area of $1,375m^2/g$ in high product yield (>95%). The UiO-66 showed 198 and 84 mg/g $CO_2$ adsorption capacity at 273 K and 298 K, respectively, with excellent $CO_2$ selectivity ($CO_2:N_2=32:1$) at ambient conditions. The isosteric heat of $CO_2$ adsorption varied from 33 to 25 kJ/mol as the adsorption progressed. The UiO-66 tested for xylene isomer separation in a liquid-phase batch mode confirmed preferential adsorption of the adsorbent for o-xylene over m-, and p-xylene.

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application (초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.

Sonochemical Synthesis of CdSe Nanoparticles from Mixed Aqueous Solution (초음파 화학법에 의한 CdSe 나노 입자의 합성)

  • Sung, Myoung-Seok;Lee, Yoon-Bok;Kim, Yong-Jin;Kim, Young-Seok;Kim, Yang-do
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2006
  • Cadmium selenide (CdSe) nanoparticles with the diameter of about 3.4nm have been synthesized from the mixed aqueous solution of distilled water and diethanolamine at room temperature. The cadmium chloride ($CdCl_2$), sodium selenosulfate ($Na_2SeSO_3$) were used as the cadmium and selenium source, respectively. The properties of CdSe nanoparticles were characterized by using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-Vis measurements. CdSe nanoparticles were analyzed to be cubic phase with the absorption excition peaks between 540 and 600 nm. CdSe nanoparticles also showed red-shifted excition peaks with increasing the sonication time. This paper mainly presents the sonication effects on the formation of CdSe nanoparticles prepared from the mixed aqueous solution of distilled water and diethanolamine.

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

Sonochemical Reaction of Fullerene Oxides, [C70(O)n](n≥1) with Aromatic Amines (방향족 아민 화합물과 풀러렌 산화물의 [C70(O)n](n≥1)의 초음파 화학 반응)

  • Ko, Weon-Bae;Park, Byoung-Eun;Lee, Young-Min
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • Sonochemical reaction of fullerene oxides, $[C_{70}(O)_n](n\geq1)$ with several aromatic amines such as 4-nitroaniline, 3-nitroaniline, and 4-isopropylaniline, in the presence of $FeCl_3$ were investigated under ultrasonic irradiation. This method is applicable to a wide variety of aromatic amines especially ring deactivated, to afford the corresponding cleavage products under mild conditions. The aminated fullerenes were confirmed by MALDI-TOF-MS and UV-vis spectra.

Synthesis of LiCoO2 Nanoparticles by a Sonochemical Method under the Multibubble Sonoluminescence Conditions

  • Park, Jong-Pil;Park, Jea-Young;Hwang, Cha-Hwan;Choi, Myung-Ho;Kim, Jee-Eon;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.327-330
    • /
    • 2010
  • $LiCoO_2$, a cathode material for lithium rechargeable batteries, was prepared in a nanoscale through a simple sonochemistry. First, $Co_3O_4$ nanoparticles were prepared by reacting NaOH and $CoCl_2$ or $CoSO_4$ with a sonochemical method, operated at 20 kHz and 220 W for 20 min, very powerful multibubble sonoluminescence conditions for chemical reactions. Second, LiOH was coated onto the $Co_3O_4$ nanoparticles by the same method as above. Finally, $LiCoO_2$ nanoparticles of about 10~30 nm size in diameter were obtained by the thermal treatment of the resulting LiOH-coated $Co_3O_4$ nanoparticles at $500^{\circ}C$ for 3 hr. This synthetic process is relatively quite mild and simple compared to the known method for the synthesis of $LiCoO_2$ nanoparticles. The materials synthesized were characterized by infrared spectroscopy, X-ray diffraction, inductively coupled plasma spectrometer, and high resolution-transmission electron microscopy analyses.

Fabrication of Nanocomposite Powders by Sonochemical Method

  • Hayashi, Yamato;Sekino, Tohru;Niihara, Koichi
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.207-209
    • /
    • 2001
  • Nano particles have recently been a major research interest, motivated by their unusual physical and chemical properties. Such particles can be synthesized using physical and chemical methods. The physical methods need expensive installation like vacuum induction furnace, whereas in chemical methods the process in generally very simple and low cost. In this study, simple and new fabrication process by using ultrasound was investigated to prepare the nano-sized metal particles on various powders at room temperature.

  • PDF

Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles (초음파 방법을 이용한 ZnO 나노입자 합성 및 광촉매 특성 연구)

  • Kim, Min-Seon;Kim, Jae-Uk;Yoo, Jeong-Yeol;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, zinc oxide nanoparticles (ZnO NPs) were synthesized using the sonochemical method, where equimolar amounts of zinc acetate dehydrate and sodium hydroxide were separately dissolved in deionized water, and then mixed for 30 min under magnetic stirring. The resultant white gel was sonicated for 60, 120, 180, 240, and 360 min with magnetic stirring. The obtained precipitates were centrifuged, repeatedly washed with ethanol to remove ionic impurities, and dried at 50 ℃ for 24 h. The formation of pure NPs was confirmed by X-ray diffraction, and their crystallinity and crystal phases were analyzed as well. Structural investigation was carried out by field-emission scanning electron microscopy (FE-SEM). The photocatalysis behavior of the ZnO NPs was investigated in a dark room under UV irradiation, using Rhodamine B. Spherical, rod, and flower-like ZnO NPs could be obtained by adjusting the sonication time, as observed by FE-SEM. The flower-like ZnO NPs exhibited excellent photocatalytic activity.

Preparation and analysis of nickel-coated alumina by sonochemistry (음향화학법으로 니켈을 코팅한 알루미나의 제조 및 분석)

  • Kim, Jin-Woo;Choi, Sung-Woo;Lee, Chang-Seop
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • Ni-coated alumina was prepared by sonochemical method. To increase an efficiency of Ni coating on alumina, amorphous alumina was prepared by sol-gel method and Ni was coated to fine particles of alumina. Ni-coated alumina was prepared from various calcination temperatures ($500^{\circ}C$, $1,000^{\circ}C$), concentrations of Ni solution (0.01 M~0.2 M) and sonochemical reaction times (30 min, 2h). The prepared fine particles were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Particle Size Analyzer (PSA). The coating amount of Ni increased, as Ni concentration and ultrasonication time increased. The maximum amount of Ni was coated to fine particles of alumina, when Ni-coated alumina was prepared with 0.1 M concentration of Ni solution for 2 h of sonication time at $1000^{\circ}C$ of calcination temperature. The average particle size was in the range of 835.9 to 986.7 nm.