• 제목/요약/키워드: Sonic Limitation

검색결과 6건 처리시간 0.018초

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석 (Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe)

  • 이기우;노승용;박기호
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

Time Average ESPI와 Euler-Bernoulli 방정식에 의한 탄성계수 측정 (Determination of Elastic Modulus by Time Average ESPI and Euler-Bernoulli Equation)

  • 김경석;이항서;강영준;강기수
    • 한국정밀공학회지
    • /
    • 제24권7호
    • /
    • pp.69-74
    • /
    • 2007
  • The paper proposes a new sonic resonance test for a elastic modulus measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI) and Euler-Bernoulli equation. Previous measurement technique of elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The proposed technique is able to give high accurate elastic modulus of materials through a simple experiment set up and analysis.

소결윅 히트파이프의 열수송 한계에 관한 이론적 해석 (Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe)

  • 김근배;김유
    • 한국추진공학회지
    • /
    • 제8권4호
    • /
    • pp.16-25
    • /
    • 2004
  • 구리분말 소결윅 히트파이프의 열수송 한계를 예측하는 이론적 해석을 수행하였다. 히트파이프의 직경은 8 mm이고 물을 작동유체로 사용하였다. 입자의 직경을 대표적인 5 가지로 분류하여 각각의 유효 모세관 반경($r_c$) 기공률($\varepsilon$), 투파율(K)을 토대로 작동온도와 윅 두에 그리고 경사각에 따른 모세관압력과 열수송 한계, 열저항을 분석하였다. 소결윅의 모세관한계는 입자 직경이 크고 윅 두께가 증가하며 작동온도가 높을수록 증가했다 기공률과 모세관 반경이 증가할수록 열수송 한계가 높아졌으며, 윅 두께가 증가함에 따라 열저항이 크게 상승하였다.

ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정 (Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing)

  • 이항서;김경석;강기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

Applications of artificial neural networks;Detections of the location of a sound-source

  • Oobayashi, Koji;Yuan, Yan;Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1036-1041
    • /
    • 2003
  • Non-destruction examinations are required in medical sciences and various engineering now. We wish to emulate the examinations in very simplified experiments. It is an educational program. We show a neural network analysis to predict the locations of a sound-source or a body irradiated by sound-waves in audio-region. The sound is an interest flux, and it enables to clear local-structures in a non-transparent space. However, the sound-propagation equations are not solved easily, therefore, we consider to adopt multi-layer neural-networks instead of the direct solutions. We used detected intensities and coordinates for input data and teaching data. A neural network learned them. The neural-network analysis decomposed the distance of 50cm. The resolution is rather rough; however, it is caused by the limitation of our equipments. Since there is no problem in the neural network processing, if we could revise experiments, then, progress of the resolution would be got. Thus, the proposed method functioned as an educational and simplified non-destruction examination.

  • PDF