• Title/Summary/Keyword: Sonic Hedgehog signaling pathway

Search Result 9, Processing Time 0.028 seconds

The role of sonic hedgehog signaling pathway in in vitro oocyte maturation

  • Lee, Sanghoon;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • In vitro maturation (IVM) of oocytes is the procedure where the immature oocytes are cultivated in a laboratory until they are mature. Since IVM oocytes generally have low developmental competence as compared to those matured in vivo, development of an optimal IVM culture system by fine-tuning culture conditions is crucial to maintain high quality. In-depth knowledge and a deep understanding of the in vivo physiology of oocyte maturation are pre-requisites to accomplish this. Within ovarian follicles, various signaling pathways that drive oocyte development and maturation regulate interaction between oocytes and surrounding somatic cells. This review discusses the sonic hedgehog (SHH) signaling pathway, which has been demonstrated to be intimately involved in folliculogenesis and oocyte maturation. Advances in elucidating the role of the SHH signaling pathway in oocyte maturation will aid attempts to improve the current inferior in vitro oocyte maturation system.

Methanol Extract of Cinnamomum cassia Represses Cellular Proliferation and Gli-mediated Transcription in PANC-1 Human Pancreatic Cancer Cells

  • Lee, Hwa Jin
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.170-175
    • /
    • 2014
  • Twenty five methanolic plant extracts were investigated to determine the anticancer activity against sonic hedgehog (shh)/Gli signaling pathway dependent cancer, PANC-1 human pancreatic cancer cells, through three screening programs. All extracts were inspected their inhibitory properties on sonic hedgehog-conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity in C3H10T1/2 mouse mesenchymal stem cells to examine whether the plant extracts affect the shh/Gli signaling pathway. Next, plant extracts were screened the ability to suppress the cell proliferation of PANC-1 human pancreatic cancer cells. Finally, active plant extracts from the two screening systems were evaluated for the suppressive effect on Gli-mediated transcriptional activity in PANC-1 cells. Among active plants, Cinnamomum cassia suppressed Gli-mediated transcriptional activity leading to the down-regulated expression of Gli-target genes such as Gli-1 and Patched-1 (Ptch-1). This study provides the consideration for the important role of natural products in drug discovery process as well as the basis for the further analysis of active plant and potential identification of novel bioactive compounds as inhibitors of Gli and therapeutic candidates against shh/Gli signaling pathway dependent cancers.

Identification of Osteogenic Purmorphamine Derivatives

  • Lee, Sung-Jin;Lee, Hak-Kyo;Cho, Sung Yun;Choi, Joong-Kwon;Shin, Hea Kyeong;Kwak, Eun-Jung;Cho, Mi-Ran;Kim, Hye-Ryun;Kim, Seung-Ryol;Kim, Yong-Min;Park, Kyoung-Jin;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.380-386
    • /
    • 2008
  • During embryonic and cancer development, the Hedgehog family of proteins, including Sonic Hedgehog, play an important role by relieving the inhibition of Smo by Ptc, thus activating the Smo signaling cascade. Recently, a purine compound, purmorphamine, has been reported to target the Hedgehog signaling pathway by interacting with Smo. Interestingly, both Sonic Hedgehog and purmorphamine were found to promote the osteogenic differentiation of mouse chondroprogenitor cells. However, there is insufficient information as to how the activation of this seemingly unrelated signaling pathway, either by Sonic Hedgehog or purmorphamine, contributes to osteogenesis. Using alkaline phosphatase assays, we screened 125 purmorphamine derivatives from the Korea Chemical Bank for effects on the differentiation of preosteoblast C2C12 cells. Here, we report that two purine derivatives modulate ALP activity as well as the expression of genes whose expression is known or suggested to be involved in osteogenesis.

Establishment of a Pancreatic Cancer Stem Cell Model Using the SW1990 Human Pancreatic Cancer Cell Line in Nude Mice

  • Pan, Yan;Gao, Song;Hua, Yong-Qiang;Liu, Lu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.437-442
    • /
    • 2015
  • Aim: To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. Materials and Methods: To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of $125mm^3$, they treated with gemcitabine at a dose of 50mg/kg by intraperitoneal injection of 0.2ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. Results: This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). Conclusions: The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

Increased Primary Cilia in Idiopathic Pulmonary Fibrosis

  • Lee, Junguee;Oh, Dong Hyun;Park, Ki Cheol;Choi, Ji Eun;Kwon, Jong Beom;Lee, Jongho;Park, Kuhn;Sul, Hae Joung
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.224-233
    • /
    • 2018
  • Primary cilia are solitary, non-motile, axonemal microtubule-based antenna-like organelles that project from the plasma membrane of most mammalian cells and are implicated in transducing hedgehog signals during development. It was recently proposed that aberrant SHH signaling may be implicated in the progression of idiopathic pulmonary fibrosis (IPF). However, the distribution and role of primary cilia in IPF remains unclear. Here, we clearly observed the primary cilia in alveolar epithelial cells, fibroblasts, and endothelial cells of human normal lung tissue. Then, we investigated the distribution of primary cilia in human IPF tissue samples using immunofluorescence. Tissues from six IPF cases showed an increase in the number of primary cilia in alveolar cells and fibroblasts. In addition, we observed an increase in ciliogenesis related genes such as IFT20 and IFT88 in IPF. Since major components of the SHH signaling pathway are known to be localized in primary cilia, we quantified the mRNA expression of the SHH signaling components using qRT-PCR in both IPF and control lung. mRNA levels of SHH, the coreceptor SMO, and the transcription factors GLI1 and GLI2 were upregulated in IPF compared with control. Furthermore, the nuclear localization of GLI1 was observed mainly in alveolar epithelia and fibroblasts. In addition, we showed that defective KIF3A-mediated ciliary loss in human type II alveolar epithelial cell lines leads to disruption of SHH signaling. These results indicate that a significant increase in the number of primary cilia in IPF contributes to the upregulation of SHH signals.

Primary Cilia, A Novel Bio-target to Regulate Skin Pigmentation (바이오 안테나인 일차 섬모 조절을 통한 피부 미백 기술)

  • Choi, Hyunjung;Park, Nokhyun;Kim, Jihyun;Cho, Dong-Hyung;Lee, Tae Ryong;Kim, Hyoung-June
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.73-79
    • /
    • 2018
  • The primary cilium protrudes from the cell body like a bio-antenna that has many receptors, channels and signaling molecules to sense and response to external stimuli. The external environment such as ultraviolet irradiation, temperature, humidity, gravity and shear stress always influences skin. Skin responds to external stimuli and differentiates by making melanin, collagen and horny layer. Ciliogenesis participates in developmental processes of skin, such as keratinocyte differentiation and hair formation. And it was reported that skin pigmentation was inhibited when ciliogenesis was induced by sonic hedgehog-smoothened-GLI2 signaling. When skin is exposed to ultraviolet irradiation, alpha-melanocyte stimulating hormones (${\alpha}$-MSH) increase melanin synthesis through activation of the cAMP pathway in melanocytes. We observed that ${\alpha}$-MSH and cAMP production inducers inhibited ciliogenesis of melanocytes. Therefore, we thought that regulation of ciliogenesis is potential candidate target for the development of agents to treat undesirable hyperpigmentation of skin. As a result, we found out that an ethanol extract of Glycyrrhiza glabra (EGG) root and 3,4,5-trimethoxy cinnamate thymol ester (TCTE, Melasolv) significantly inhibit melanin synthesis of normal human melanocyte by inducing primary cilium formation. This study proposed new theory to regulate skin pigmentation and cosmetic components for skin whitening.

Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Hua, Jianming;Shen, Ning;Wang, Jingkai;Tao, Yiqing;Li, Fangcai;Chen, Qixin;Zhou, Xiaopeng
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.661-671
    • /
    • 2019
  • Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising for regenerating degenerated intervertebral discs (IVDs), but the low efficiency of nucleus pulposus (NP)-specific differentiation limits their clinical applications. The Sonic hedgehog (Shh) signaling pathway is important in NP-specific differentiation of ADSCs, and Smoothened Agonist (SAG) is a highly specific and effective agonist of Shh signaling. In this study, we proposed a new differentiation strategy with the use of the small molecule SAG. The NP-specific differentiation and extracellular matrix (ECM) synthesis of ADSCs were measured in vitro, and the regenerative effects of SAG pretreated ADSCs in degenerated IVDs were verified in vivo. The results showed that the combination of SAG and transforming growth factor-${\beta}3$ ($TGF-{\beta}3$) is able to increase the ECM synthesis of ADSCs. In addition, the gene and protein expression levels of NP-specific markers were increased by treatment with SAG and $TGF-{\beta}3$. Furthermore, SAG pretreated ADSCs can also improve the disc height, water content, ECM content, and structure of degenerated IVDs in vivo. Our new differentiation scheme has high efficiency in inducing NP-specific differentiation of ADSCs and is promising for stem cell-based treatment of degenerated IVDs.

A case of TBC1D32-related ciliopathy with novel compound heterozygous variants

  • Ahn, Ji Ye;Kim, Soo Yeon;Lim, Byung Chan;Kim, Ki Joong;Chae, Jong Hee
    • Journal of Genetic Medicine
    • /
    • v.18 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • Primary cilium has a signal transduction function that is essential for brain development, and also determines cell polarity and acts as a mediator for important signaling systems, especially the Sonic Hedgehog (SHH) pathway. TBC1D32 is a ciliary protein, implicated in SHH signaling. Biallelic mutations in the TBC1D32 gene causes a kind of ciliopathy, heterogeneous developmental or degenerative disorders that affect multiple organs, including the brain. Here we report a boy who carried compound heterozygous variants in TBC1D32. The patient showed hypotonia, respiratory difficulty, and multiple anomalies at his birth. He was diagnosed with congenital hypopituitarism and treated with T4, hydrocortisone, and growth hormone. Despite the hormonal replacement, the patient needed long-term respiratory support with tracheostomy and nutritional support with a feeding tube. His developmental milestones were severely retarded. Hydrocephalus and strabismus developed and both required surgery, during the outpatient follow-up. Whole-exome sequencing indicated compound heterozygous variants, c.2200C>T (p.Arg734*) and c.156-1G>T, in TBC1D32 gene. This is the first Korean case of TBC1D32-related ciliopathy and we reported detailed and sequential clinical features. This case demonstrated the utility of whole-exome sequencing and provided valuable clinical data on ultra-rare disease.

Induction of Midbrain Dopaminergic Phenotype in Nurr 1-Over expressing Human Neural Stem Cells (사람 신경 간세포에서 도파민 신경세포 분화유도에 대한 Nurr 1 유전자의 역할 규명)

  • Kim, Han-Jip;Lee, Haksup;Kim, Hyon-Chang;Min, Churl-Ki;Lee, Myung-Ae;Kim, Seung-Up;Han, Jin;Youm, Jae-Boum;Kim, Nari;Park, Won, Sun;Kim, Taeho;Kim, Euiyong;Han, Il-Yong
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.363-370
    • /
    • 2005
  • Neural stem cells (NSCs) of the central nervous system (CNS) have raised a great interest not only for their importance in basic neural development but also for their therapeutic potentials in neurologically degenerative diseases such as Parkinson's, Alzheimer and stroke. During the CNS development, two molecular cascades determine specification of midbrain dopamine system. In one pathway, FGF-8, sonic hedgehog and transcription factor Nurr1 specify dopamine neurotransmitter phenotype. In the other, transcription factors $Lm{\times}lb\;and\;Pt{\times}3$ are required for induction of dopaminergic neurons. In Nurr1 knockout mouse, tyrosine hydroxylase (TH) positive cells fail to appear in substantia nigra, indicating that Nurr1 is essential in specification of dopaminergic cell phenotype. In this study, we used the immortalized human NSCs retrovirally transduced with Nurr1 gene to probe the Nurr1 mediated mechanism to induce dopamine phenotype. While Nurr1 over-expression alone did not generate dopamine phenotype in NSCs, applications of retinoid and forskolin induced expression of TH and AADC mRNAs. In addition, co-cultures of Nurr1 expressing NSCs with human astrocytes induced a marked increase of TH expression. In this co-culture system, the addition of retinoid and forskolin dramatically increased expression of TH. These results indicate that the immortalized human NSCs with Nurr1 gene could have a clinical utility for cell replacement for the Parkinson patients.