• 제목/요약/키워드: Somatic cell nuclear transfer(SCNT)

검색결과 127건 처리시간 0.022초

돼지 체세포복제 35일령 태아에서 H19 메틸화 가변 영역의 DNA 메틸화 변화 (DNA Methylation Change of H19 Differentially Methylated Region (DMR) in Day 35 of Cloned Pig Fetuses)

  • 고응규;임기순;황성수;오건봉;우제석;조상래;최선호;이풍연;연성흠;조재현
    • 한국수정란이식학회지
    • /
    • 제26권1호
    • /
    • pp.79-84
    • /
    • 2011
  • This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.

Methylation Pattern of H19 Gene at Various Preimplantation Development Stages of In Vitro Fertilized and Cloned Porcine Embryos

  • Im, Young-Bin;Han, Dong-Wook;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Heo, Young-Tae;Kim, Jin-Hoi;Park, Chan-Kyu;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.83-90
    • /
    • 2007
  • Insulin-like growth factor II (IGF2) and H19 genes are mutually imprinted genes which may be responsible for abnormalities in the cloned fetuses and offspring. This study was performed to identify putative differentially methylated regions (DMRs) of porcine H19 locus and to explore its genomic imprinting in in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) embryos. Based on mice genomic data, we identified DMRs on H19 and found porcine H19 DMRs that included three CTCF binding sites. Methylation patterns in IVF and SCNT embryos at the 2-, 4-, $8{\sim}16$-cells and blastocyst stages were analyzed by BS (Bisulfite Sequencing)-PCR. The CpGs in CTCF1 was significantly unmethylated in the 2-cell stage IVF embryos. However, the 4- (29.1%) and $8{\sim}16$-cell (68.2%) and blastocyst (48.2%) stages showed higher methylation levels (p<0.01). On the other hand, SCNT embryos were unmethylayted ($0{\sim}2%$) at all stages of development. The CpGs in CTCF2 showed almost unmethylation levels at the 2-,4- and $8{\sim}16$-cell and blastocyst stages of development in both IVF ($0{\sim}14.1%$) and SCNT ($0{\sim}6.4%$) embryos. At all stages of development, CTCF3 was unmethylated in IVF ($0{\sim}17.3%$) and SCNT ($0{\sim}1.2%$) embryos except at the blastocyst stage (54.5%) of IVF embryos. In conclusion, porcine SCNT embryos showed an aberrant methylation pattern comprised to IVF embryos. Therefore, we suggest that the aberrant methylation pattern of H19 loci may be a reason for increased abnormal fetus after embryo transfer of porcine SCNT embryos.

Cloned Placenta of Korean Native Calves Died Suddenly at Two Months after Birth Displays Differential Protein Expression

  • Kim Hong Rye;Kang Jae Ku;Lee Hye Ran;Yoon Jong Taek;Seong Hwan Hoo;Jung Jin Kwan;Park Chang Sik;Jin Dong Il
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.63-68
    • /
    • 2005
  • Cloned calves derived from somatic cell nuclear transfer (SCNT) have been frequently lost by sudden death at 1 to 3 month following healthy birth. To address whether placental anomalies are responsible for the sudden death of cloned calves, we compared protein patterns of 2 placentae derived from SCNT of Korean Native calves died suddenly at two months after birth and those of 2 normal placentae obtained from AI fetuses. Placental proteins were separated using 2-Dimensional gel electrophoresis. Approximately 800 spots were detected in placental 2-D gel stained with coomassie-blue. Then, image analysis of Malanie III (Swiss Institute for Bioinformatics) was performed to detect variations in protein spots between normal and SCNT placentae. In the comparison of normal and SCNT samples, 8 spots were identified to be up-regulated proteins and 24 spots to be down-regulated proteins in SCNT placentae, among which proteins were high mobility group protein HMG1, apolipoprotein A-1 precursor, bactenecin 1, tropomyosin beta chain, $H^+-transporting$ ATPase, carbonic anhydrase II, peroxiredoxin 2, tyrosine-rich acidic matrix protein, serum albumin precursor and cathepsin D. These results suggested that the sudden death of cloned calves might be related to abnormal protein expression in placenta.

Maintained MPF Level after Oocyte Vitrification Improves Embryonic Development after IVF, but not after Somatic Cell Nuclear Transfer

  • Baek, Ji I;Seol, Dong-Won;Lee, Ah-Reum;Lee, Woo Sik;Yoon, Sook-Young;Lee, Dong Ryul
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.871-879
    • /
    • 2017
  • Levels of maturation-promoting factor (MPF) in oocytes decline after vitrification, and this decline has been suggested as one of the main causes of low developmental competence resulting from cryoinjury. Here, we evaluated MPF activity in vitrified mouse eggs following treatment with caffeine, a known stimulator of MPF activity, and/or the proteasome inhibitor MG132. Collected MII oocytes were vitrified and divided into four groups: untreated, 10 mM caffeine (CA), $10{\mu}M$ MG132 (MG), and 10 mM caffeine + $10{\mu}M$ MG132 (CA+MG). After warming, the MPF activity of oocytes and their blastocyst formation and implantation rates in the CA, MG, and CA+MG groups were much higher than those in the untreated group. However, the cell numbers in blastocysts did not differ among groups. Analysis of the effectiveness of caffeine and MG132 for improving somatic cell nuclear transfer (SCNT) technology using cryopreserved eggs showed that supplementation did not improve the blastocyst formation rate of cloned mouse eggs. These results suggest that maintaining MPF activity after cryopreservation may have a positive effect on further embryonic development, but is unable to fully overcome cryoinjury. Thus, intrinsic factors governing the developmental potential that diminish during oocyte cryopreservation should be explored.

Analysis of Decorin Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Choi, Yo-Han;Seo, Hee-Won;Kim, Min-Goo;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • 제34권2호
    • /
    • pp.95-101
    • /
    • 2010
  • Decorin (DCN) is a member of small leucine-rich proteoglycans which are ubiquitous components of the extracellular matrix. It regulates many physiological processes, such as matrix formation, collagen fibrillogenesis, angiogenesis, cancer growth, and cardiovascular diseases. It has been shown that DCN is expressed in the uterus during pregnancy and modulates implantation and decidualization for the establishment and maintenance of pregnancy in mice and humans. Expression of DCN in the uterine endometrium during pregnancy has not been investigated in pigs. Thus, this study investigated expression of DCN in the uterine endometrium during the estrous cycle and pregnancy in pigs. Uterine endometrial tissues were from day (D) 12 and 15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy. Northern blot and real-time RT-PCR analyses showed that expression of DCN mRNA was detected throughout the estrous cycle and pregnancy with the highest levels during mid pregnancy. In situ hybridization analysis showed that DCN mRNA was localized to both luminal and glandular epithelia during the estrous cycle and pregnancy and also to chorionic membrane during mid pregnancy in pigs. To determine whether endometrial expression of DCN was affected by the somatic cell nuclear transfer (SCNT) procedure, DCN mRNA levels in the uterine endometrium from gilts with SCNT embryos on D30 of pregnancy were compared with those from gilts with normal embryos using real-time RT-PCR analysis. The result showed that DCN mRNA levels in the uterine endometrium were not significantly different between gilts with normal embryos and SCNT embryos. These results suggest that DCN may play an important role for endometrial tissue remodeling during mid pregnancy, and DCN expression is not affected by the SCNT procedure at the early stage of pregnancy in pigs.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Effects of Recipient Oocyte and Embryo Culture System on Production of Hanwoo (Korean Native Cattle) Somatic Cell Nuclear Transferred Embryos

  • Kim, Dong-Hoon;Kim, Se-Woong;Lee, Min-Jung;Bae, Seong-Hoon;Im, Gi-Sun;Lim, Hyun-Joo;Yang, Byoung-Chul;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • 제32권3호
    • /
    • pp.175-181
    • /
    • 2008
  • This study was conducted to investigate an effective recipient oocyte and culture system for producing of Hanwoo (Korean native cattle) somatic cell nuclear transfer (SCNT) embryos. Hanwoo ear skin fibroblasts were used as donor cells. In vitro matured Hanwoo or Holstein oocytes were enucleated, and single donor cells were transferred into the perivitelline space of the enucleated oocytes. The couplets were subsequently fused and activated. The reconstructed embryos were cultured in a conventional or sequential culture system. In the former, embryos were cultured in CR2aa medium for eight days; in the latter, embryos were cultured in modified CR2aa-A (mCR2-A) for three days and then further cultured in modified CR2aa-B (mCR2-B) for five days. In the experiment with the recipient oocyte, the rate of embryo development to the blastocyst stage was significantly (p<0.05) higher in Hanwoo recipient oocytes than in Holstein ones (48.8% vs 38.9%). BIastocysts derived from Hanwoo recipient oocytes contained significantly (p<0.05) higher numbers of total cells than those derived from Holstein recipient oocytes ($156.0{\pm}68.2$ vs $134.7{\pm}54.8$). There was no difference in the mean proportion of apoptotic cells in blastocysts between the sources of recipient oocytes. In the experiment with the embryo culture system, the blastocyst rate was somewhat higher in sequential system than in conventional system (50.0% vs 43.5%), though there was no significant difference. The numbers of total ($160.0{\pm}69.0$ vs $156.7{\pm}68.4$) and apoptotic cells ($14.0{\pm}10.4$ vs $11.8{\pm}6.4$) were not different between the culture systems. In conclusion, the present study demonstrated that Hanwoo recipient oocytes and the sequential culture system were more effective in supporting the production of Hanwoo SCNT embryos.

Endocrine Profiles and Blood Chemistry Patterns of Cloned Miniature Pigs in the Post-Puberty Period

  • Lee, Sung-Lim
    • 한국수정란이식학회지
    • /
    • 제29권2호
    • /
    • pp.119-125
    • /
    • 2014
  • Although the majority of surviving pigs cloned by somatic cell nuclear transfer (SCNT) appear to be physiologically normal, there is a general lack of detailed hemato-physiologic studies for the period of early adulthood to substantiate this claim. In the present study, we investigated variation in blood chemistry and endocrinological parameters between mesenchymal stem cells (MSCs) derived from cloned and normal age-matched female and male miniature pigs. Cloned females and males showed normal ranges for complete blood count assessments. Biochemical assessments showed that ${\gamma}$-GGT, ALT and cholesterol levels of male and female clones were significantly (P<0.05 or P<0.01, respectively) higher than that of age-matched control miniature pigs. Variations in insulin and IGF-1 were higher in female clones than in male clones and controls. Thus, although female and male cloned miniature pigs may be physiologically similar to normal animals, or at least within normal ranges, a greater degree of physiological and endocrinological variation was found in cloned pigs. The above variation must be taken into account before considering cloned female or male miniature pigs for various biomedical applications.

Klotho : Expression and Regulation at the Maternal-Conceptus Interface in Pigs

  • Choi, Yohan;Seo, Heewon;Shim, Jangsoo;Hyun, Sang-Hwan;Lee, Eunsong;Ka, Hakhyun
    • 한국수정란이식학회지
    • /
    • 제29권4호
    • /
    • pp.375-383
    • /
    • 2014
  • Klotho (KL) is a single transmembrane protein composed of KL1 and KL2 repeats possessing ${\beta}$-glucuronidase activity and maintains calcium homeostasis in physiological state. It has been implicated in pigs that calcium is important for the establishment and maintenance of pregnancy, and our previous study has shown that transient receptor potential vanilloid type 6 (TRPV6), a calcium ion transporter, is predominantly expressed in the uterine endometrium during pregnancy in pigs. However, expression and function of KL in the uterine endometrium has not been determined in pigs. Thus, the present study determined expression and regulation of KL in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that levels of KL mRNA decreased between Days 12 to 15 of the estrous cycle, and its expression showed a biphasic manner during pregnancy. KL mRNA was expressed in conceptuses and in chorioallantoic tissues during pregnancy. Explant culture study showed that expression levels of KL were not affected by treatment of steroid hormones or interleukin-1beta during the implantation period. Furthermore, levels of KL mRNA in the uterine endometrium from gilts carrying somatic cell nuclear transfer (SCNT)-derived embryos were significantly lower than those from gilts carrying natural mating-derived embryos on Day 12 of pregnancy. These results exhibited that KL was expressed at the maternal-conceptus interface in a pregnancy status- and stage-specific manner, and its expression was affected by SCNT procedure, suggesting that KL may play an important role in the establishment and maintenance of pregnancy in pigs.

Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases

  • Yuan, Yu-Guo;Song, Shao-Zheng;Zhu, Meng-Ming;He, Zheng-Yi;Lu, Rui;Zhang, Ting;Mi, Fei;Wang, Jin-Yu;Cheng, Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1175-1182
    • /
    • 2017
  • Objective: To create genetically modified goat as a biopharming source of recombinant human lacotoferrin (hLF) with transcription activator-like effector nucleases. Methods: TALENs and targeting vector were transferred into cultured fibroblasts to insert hLF cDNA in the goat beta-lactoglobulin (BLG) locus with homology-directed repair. The gene targeted efficiency was checked using sequencing and TE7I assay. The bi-allelic gene targeted colonies were isolated and confirmed with polymerase chain reaction, and used as donor cells for somatic cell nuclear transfer (SCNT). Results: The targeted efficiency for BLG gene was approximately 10%. Among 12 Bi-allelic gene targeted colonies, five were used in first round SCNT and 4 recipients (23%) were confirmed pregnant at 30 d. In second round SCNT, 7 (53%), 4 (31%), and 3 (23%) recipients were confirmed to be pregnant by ultrasound on 30 d, 60 d, and 90 d. Conclusion: This finding signifies the combined use of TALENs and SCNT can generate biallelic knock-in fibroblasts that can be cloned in a fetus. Therefore, it might lay the foundation for transgenic hLF goat generation and possible use of their mammary gland as a bioreactor for large-scale production of recombinant hLF.