• 제목/요약/키워드: Solvent reduction

Search Result 289, Processing Time 0.023 seconds

Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions

  • Kouhkan, Mehri;Zeynizadeh, Behzad
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2961-2966
    • /
    • 2010
  • Reduction of carbonyl compounds such as aldehydes, ketones, $\alpha,\beta$-unsaturated enals and enones, $\alpha$-diketones and acyloins was carried out readily with $NaBH_3CN$ in the presence of wet $SiO_2$ as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - $80^{\circ}C$) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation.

플라스틱 포장재의 잔존 인쇄 용제 감소 방안 (Study about decreasing methods of printing ink solvents residue amounts on plastic food package materials)

  • 안덕준;조훈일
    • 한국포장학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2004
  • Amount of residual ink solvent on the packaging materials from Korea, Japan and Europe was measured and compared. The amount of packaging materials from Korea was much higher than that of Japan and Europe. To reduce the residual amounts of ink solvent, aging condition of printed packaging materials including aging time and temperature was modified and evaluated. Aging with high temperature and short time ($60^{\circ}C$ and 24 hours) was more effective for reduction of residual amount of ink solvent than that with low temperature and long time. To find out change of reduction pattern of residual amount of solvent according to plastic packaging material, several monolayer and multilayer packaging materials were selected. Among the monolayer packaging materials, the amount of EVOH and PET was lower than that of polyolefin plastic film including PE and PP. PP/EVOH/PET among the selected multilayer film showed the lowest amount of residual ink solvent on food packaging materials. Result of this research revealed that the residual amount of ink solvent can be reduced by proper selection of aging condition with and by appropriate application of mutilayer plastic film.

  • PDF

새로운 용액환원법에 의한 구형 코발트 미세 분말의 제조 (Preparation of Spherical Cobalt Fine Powders by New Liquid Reduction Method)

  • 김대원;김지훈;최요한;최희락;윤진호
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.260-265
    • /
    • 2015
  • Spherical fine cobalt powders were fabricated by new liquid reduction method. Commercial cobalt sufate heptahydrate was used as raw material. Also ethylene glycol was used as solvent and hydrazine-sodium hypophosphite mixture was used as reduction agent for the new liquid reduction method. A plate shaped cobalt powders with an approximately 300 nm were prepared by a traditional wet ruduction method using distilled water as solvent and hydrazine. Spherical fine cobalt powders with an average size of $1-3{\mu}m$ were synthesized by a new liquid reduction method in 0.3M cobalt sulfate and 1.5M hydrazine-0.6M sodium hypophosphite mixture at 333K.

디메틸술폭시드용매중에서 Thorium (IV)-Crown Ether 착물의 산화-환원 반응메카니즘 (Redox Reaction Mechanisms of Thorium (IV) Complexes with Crown Ethers in Dimethylsulfoxide)

  • 정학진;정오진;서혁춘
    • 대한화학회지
    • /
    • 제31권3호
    • /
    • pp.250-257
    • /
    • 1987
  • DMSO와 $H_2O$용매 중에서 결합구조가 밝혀진 동공의 크기를 달리한 토륨(IV) 착물들의 전기전도도를 측정하여 해리현상과 전해질의 행동을 알아 보고 DMSO용매중에서 polarography와 cyclic voltammography적 거동을 조사하여 합성착물의 산화환원반응 메카니즘, 가역성을 알아 보고 환원과정에 관여하는 전자수 및 착물의 확산계수를 계산하였다. 그 결과 반양성자성 용매에서 모든 착물들은 1:1전해질로, 물에서는 1:4전해질로 각각 행동하고, DMSO용매중에서 각 착물의 환원반응은 1전자 1단계의 환원반응으로 가역적이며 확산계수는 착물종에 따라 $5.831{\times}10^{-6}{\sim}6.900{\times}10^{-6}$이었다. 그리고 모든 착물의 물분자는 -1.8V(대조전극, SCE)이상에서 분해를 일으켜 수소기체를 발생한다.

  • PDF

CDP 섬유의 염색성(III) -극세 CDP섬유의 염색성, Solvent wicking성 및 물성- (Dyeing Properties of CDP Fiber(III) - Dyeing and Solvent Wicking and Physical Properties of Micro CDP Fiber -)

  • 김영희;정동석;이문철
    • 한국염색가공학회지
    • /
    • 제17권5호
    • /
    • pp.1-12
    • /
    • 2005
  • Polyester fibers can be modified into cationic dyeable polyester fibers(CDP) by the copolymerization of terephthalic acid and 5-sodium sulphoisophthalic acid with ethylene glycol. The advantage of CDP on most cationic dyes is the conspicuous brilliance due to a narrow steep absorption band and the wash fastness and etc. Weight reduction by alkali hydrolysis, dyeing and solvent wicking properties of fabrics with cationic dyes, and change of fine structure were investigated. To obtain optimum splitting process parameters for dyeing and physical properties of micro CDP fiber, splitting method under various conditions was carried out. By means of SEM, it was confirmed that the splitting process of the micro CDP fiber be achieved at the weight reduction. A comparatively greater quantity of dye is necessary to dye microfiber than conventional fiber. The fastness and solvent wicking of regular CDP fiber is higher than that of micro CDP fiber.

PHOTOCHEMICAL REACTIONS OF PSEUDOSACCHARIN 3-ALLYL ETHER (PROBENAZOLE) AND ITS ALKYL ETHER

  • Yoon, Ung-Chan
    • Journal of Photoscience
    • /
    • 제2권2호
    • /
    • pp.77-81
    • /
    • 1995
  • Photoreactions of pseudosaccharin ethers have been investigated. Pseudosaccharin 3-allyl ether undergoes a facile photoreaction via reaction pathways involving homolysis of bond between pseudosaccharyl oxygen and 3-allyl carbon, and excited nucleophilic substitution of allyloxy group by solvent which are not quenched by oxygen present in the reaction. Product yield demonstrates that the homolysis pathway predominates over the nucleophilic substitution in ca. 7:1 ratio. In contrast, pseudosaccharin alkyl ethers follow different reaction routes to produce two products, solvent-substituted pseudosaccharin alkyl ethers and reduction products, 3-alkoxy-1, 2-benzisothiazoles. The formations of reduction products, 3-alkoxy-1, 2-benzisothiazoles are completely quenched by oxygen.

  • PDF

A Facile Preparation of Silver Nanocolloids by Hydrogen Reduction of a Silver Alkylcarbamate Complex

  • Hong, Hyun-Ki;Gong, Myoung-Seon;Park, Chan-Kyo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2669-2674
    • /
    • 2009
  • Controlled reduction of silver alkylcarbamate complexes with hydrogen gas was investigated as a facile synthetic method for high concentrations of silver nanocolloids in organic solvent. Polyvinylpyrrolidone (PVP) was used to stabilize the silver colloids obtained from the chemical reduction. To determine optimum conditions for preparation of the stable and controlled silver colloids with the narrowest particle size and distribution, a large number of experiments were carried out involving variations in the concentrations of the silver 2-ethylhexylcarbamate (Ag-EHCB) complex, PVP, and 2-propanol. The initial colloid had a mean particle diameter between 5$\sim$50 nm, as measured by transmission electron microscopy, and exhibited a sharp absorption band in the UV region with a maximum size near 420 nm. After treatment with a reducing agent, the colloids were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy.

Preparation of tungsten metal film by spin coating method

  • Lee, Kwan-Young;Kim, Hak-Ju;Lee, Jung-Ho;Sohn, Il-Hyun;Hwang, Tae-Jin
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.71-76
    • /
    • 2002
  • Metal thin films, which are indispensable constituents of ULSI (Ultra Large Scale Integration) circuits, have been fabricated by physical or chemical methods. However, these methods have a drawback of using expensive high vacuum instruments. In this work, the fabrication of tungsten metal film by spin coating was investigated. First of all, inorganic peroxopolytungstic acid (W-IPA) powder, which is soluble in water, was prepared by dissolving metal tungsten in hydrogen peroxide and by evaporating residual solvent. Then, the solution of W-IPA was mixed with organic solvent, which was spin-coated on wafers. And then, tungsten metal films, were obtained after reduction procedure. By selecting an appropriate organic solvent and irradiating UV, the sheet resistance of the tungsten metal film could be remarkably reduced.

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.

Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향 (Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction.)

  • 박현;지영민
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF