• Title/Summary/Keyword: Solvent recycling

Search Result 195, Processing Time 0.022 seconds

Recycling of $\beta$-Cyclodextrin Used for Cholesterol Removal from Egg Yolk (난황의 콜레스테롤 제거에 사용한 $\beta$-Cyclodextrin의 재활용)

  • 유익종;최성유;박우문;전기홍
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The method used to remove cholesterol from egg by using $beta$-cyclodextrin was relatively stable and efficient. The aim of this study was to cost down by recycling $\beta$-cyclodextrin used to remove cholesterol from egg yolk because $\beta$-cyclodextrin was expensive. The solvents used to separate $\beta$-cyclodextrin from $\beta$-cyclodextrin complex containing egg yolk cholesterol were butanol, chloroform, ether, hexane, methanol, 2-propanol and their mixture. The ratio of solvent and complex varied from 2 : 1 to 10 : 1. The condition of mixing time and temperature varied from 30 to 60$^{\circ}C$ and from 10 minutes to 3 hours to remove cholesterol from $\beta$-cyclodextrin complex. When the ratio of choloroform and methanol was 1 : 1, the removal efficiency of cholesterol was 98.8%. The efficiency of cholesterol removal was improved when the ratio of solvent : complex increased to 4 : 1. When mixing time and temperature was up to for 1hr, at 50$^{\circ}C$ respectively, the efficiency of cholesterol removal improved to 99%. It concluded that the efficiency of cholesterol removal of 50% renewed one contained $\beta$-cyclodextrin were 81.1% while the cholesterol removal efficiency of 100% renewed $\beta$-cyclodextrin was 24% if cholesterol removal efficiency of new $\beta$-cyclodextrin were 100%.

  • PDF

Recovery of Indium from Secondary Resources by Hydrometallurgical Method (2차(次) 자원(資源)으로부터 습식방법(濕式方法)에 의한 인듐의 회수(回收))

  • Wang, Lingyun;Lee, Manseung
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.3-10
    • /
    • 2013
  • Indium is one of the rare metals, and it has been used mainly for preparation of indium tin oxide (ITO). This review investigated the process parameters and the merits and demerits of several methods to recover indium from the leaching solution of secondary resources, such as solvent extraction, ion exchange, and precipitation. D2EHPA has been used mostly as a cationic extractant for indium extraction in moderate acid solutions, while amine extractants are used in strong hydrochloric acid solution. Since the loading capacity of resins for indium is generally small, ion exchange has some advantage over solvent extraction only when the concentration of indium is low.

Technology for the Recovery of Os and Ru from Primary/Secondary Resources (1차(次)/2차(次) 자원(資源)으로부터 Os과 Ru 회수기술(回收技術))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.3-11
    • /
    • 2012
  • Some methods used for the recovery of osmium and ruthenium from primary/secondary sources are reviewed. Both Ru and Os could form volatile oxides which enable their separation from the other PGMs by distillation as a traditional method. In hydrochloric acid solution, they also form chloro-complexes with different valence states. Amines or amine based mixture have been used to extract Ru. Solvating extractants are employed to separate Ru and Os. The detailed extraction and stripping conditions of several solvent extraction processes have been reviewed. As an alternative to solvent extraction, solid-liquid method can be applied to recover trace amount of these metals.

Separation of Light Rare Earth Elements by Solvent Extraction with a Mixture of Cationic and Tertiary Amine (양이온 추출제와 아민의 혼합추출제에 의한 경희토류금속의 분리)

  • Lee, Man-Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.3-10
    • /
    • 2017
  • Rare earth elements with high purity are demanded for the manufacture of advanced materials. Light rare earth elements are contained in domestic monazite and Ni-MH batteries. In this paper, solvent extraction to separate the light rare earth elements from hydrochloric acid leaching solutions of these resources was discussed. A mixture of cationic and tertiary amine shows synergistic effect on the extraction of LREEs and the extent of pH decrease during extraction is reduced. The effect of solution pH on the extraction and synergism was reviewed. Acquisition of the operation data with mixer-settler on the separation of LREEs by this mixture is necessary to develop a process.

Selective Solvent Extraction of In from Synthesis Solution of MOCVD Dust using D2EHPA (MOCVD 더스트 합성용액으로부터 D2EHPA를 이용한 In의 선택적 용매추출)

  • Im, Byoungyong;Swain, Basudev;Lee, Chan Gi;Park, Jae Layng;Park, Kyung-Soo;Shim, Jong-Gil;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.80-86
    • /
    • 2015
  • The separation of In from the synthesis solution with Ga, Fe, and Al has been studied by the solvent extraction using D2EHPA as an extractant. The effects as a function of the concentration of extractant and HCl on the extraction of In were investigated. The extraction of In and Ga increased with decreasing HCl concentration, but that of Fe and Al was independent. Separation factor between In and Ga of 115 was obtained at 1.0 M D2EHPA in the presence of 0.5 M HCl of feed solution. Consequently, this study shows that D2EHPA is suitable extractant for In extraction from the synthesis solution. Extraction efficiency and separation factor could be increased by controlling HCl and extractant concentration.

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF