• Title/Summary/Keyword: Solvent Extraction

Search Result 1,681, Processing Time 0.027 seconds

Microwave-Assisted Extraction of Effective Constituents from Ginseng (마이크로파를 이용한 인삼으로부터 유효성분의 추출)

  • Lee, Dong-Won;Park, Young-Sin;Kim, Dok-Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.427-433
    • /
    • 2005
  • The use of the microwave-assisted process for the extraction of effective constituents from ginseng was investigated at various operating conditions. The influence of solvent (ethanol-water, 50% v/v) to ginseng ratio, particle size and applied microwave power on the efficiency of extraction was examined. The microwave extraction system used was custom manufactured so that the intensity of microwave may be varied by using anode-voltage controller. It was found that the ratio of 6 : 1 (vol/mass) gave a good extraction efficiency. Small particle size gave high yield but it caused difficulties in the separation of solvent from the sludge. The higher power was no guarantee of the efficient extraction yield. The more important factor than the employed power was the adequate temperature under sufficient contact time. Using deionized-water as swelling agent, the degree of swelling of ginseng by microwave heating and conventional heating in water-bath was also studied. It was observed that the microwave heating enhanced the swelling much more than the conventional heating. It is believed that this enhanced swelling was responsible for the rapid microwave-assisted extraction rate.

Optimization of Aqueous Methanol Extraction Condition of Total Polyphenol from Spent $Lycium$ $chinense$ Miller to Develop Feed Additives for Pig (양돈용 사료 첨가제 개발을 위하여 구기자 부산물로부터 메탄올수용액을 이용한 총 폴리페놀 추출조건 최적화)

  • Shim, Kwan-Seob;Na, Chong-Sam;Oh, Sung-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • This study was conducted to develop a functional feed additive for pig with spent $Lycium$ $chinense$ Mill fruit. We investigated the optimum conditions for the extraction of polyphenol from spent $Lycium$ $chinense$ Mill using methanol. Methanol concentration as a solvent for extraction, extraction time and the volume of solvent per a gram of solid (ground spent Lyceum chinense Mill) were selected as parameters. Three levels of parameters were configured according to Box Behnken experiment design, a fractional factorial design, and total 15 trials were employed. Total polyphenol concentration from each trial was used as response from experiment system and effects of parameters on total polyphenol extraction efficiency were determined using response surface model. As a result, all terms in analysis of variance, regression ($p$ = 0.001), linear ($p$ = 0.002), square ($p$ = 0.017) and interaction ($p$ = 0.047) was significant and adjusted determination coefficient ($R^2$) was 94.7%. Total polyphenol extraction efficiency was elevated along increased methanol content and decreased solvent to solid ratio. However extraction time did not affect the efficiency. This study provides a primary information for the optimum extraction conditions to maximize total polyphenol recovery from spent Lycium chinens Mill fruit and this result could be applied to re-use of argo-industrial by-products and to develop of functional feed additives in organic farming.

Effects of Solvent Selection and Fabrication Method on the Characteristics of Biodegradable Poly(lactide-co-glycolide) Microspheres Containing Ovalbumin

  • Cho, Seong-Wan;Song, Seh-Hyon;Shoi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.385-390
    • /
    • 2000
  • To demonstrate the effect of formulation conditions on the controlled release of protein from poly(lactide-co-glycolide) (PLGA) microspheres for use as a parenteral drug carrier, ovalbumin (OVA) microspheres were prepared using the W/O/W multiple emulsion solvent evaporation and extraction method. Methylene chloride or ethyl acetate was applied as an organic phase and poly(vinyl alcohol) as a secondary emulsion stabilizer. Low loading efficiencies of less than 20% were observed and the in vitro release of OVA showed a burst effect in all batches of different microspheres, followed by a gradual release over the next 6 weeks. Formulation processes affected the size and morphology, drug content, and the controlled release of OVA from PLGA microspheres.

  • PDF

Solvent-localized in-situ NMR Monitoring by Intermolecular Single-quantum Coherence Study

  • Cha, Jin Wook;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.96-103
    • /
    • 2020
  • A new NMR method to monitor solvent-localized NMR signals in the two-phase liquid system is suggested. This method based on intermolecular single-quantum coherence (iSQC). Here, we exploited the feature of the local action of distant dipolar field (DDF) effect in order to filter out specific NMR signals dissolved in different solvents. This solvent specific iSQC spectroscopy was carried out on a model two-phase liquid system (D-glucose in water/palmitic acid in chloroform), and showed solvent-localized NMR signals. We believe our approaches might be useful in metabolic analysis such as two-phase liquid extraction scheme for labile chemical species.

Change of Antioxidant Activity and Antioxidant Compounds in Saururus chinensis by Extraction Conditions (추출조건에 따른 삼백초 추출물의 항산화 활성 및 성분의 변화)

  • Kim, Suk-Kyung;Ban, So-Youn;Kim, Jun-Sung;Chung, Shin-Kyo
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.89-92
    • /
    • 2005
  • This study was conducted in order to establish the optimum extraction conditions in obtaining Saururus chinensis extracts. At the optimum extraction solvent (40% ethanol solvent), yield, DPPH, total phenolic compounds and total flavonoid in the extract of Saururus chinensis were 13.50%, 83.50%, 2.60 mg/ml and 2.09 mg/ml, respectively. At the optimum extraction time (4 hours), yield, DPPH, total phenolic compounds and total flavonoid in the extract of Saururus chinensis were 12.79%, 71.13%, 2.83 mg/ml and 2.16 mg/ml, respectively. At the optimum conditions (40% ethanol solvent and 4 hours), quercetrin and quercetin contents were 360.13 mg/100 g and 1379.54 mg/100 g, respectively. From the above results, we suggest that the optimum Saururus chinensis extract conditions are 40% ethanol solvent and 4 hours.

Selective Extraction of Cytotoxic Substances from Medicinal Plants using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 약용식물 성분의 선택적 추출)

  • Choi, Young-Hae;Park, Eun-Jung;Kim, Young-Leem;Chin, Young-Won;Jeon, Seong-Ho;Joung, Seung-Nam;Yoo, Ki-Pung;Kim, Jin-Woong
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 1999
  • Supercritical fluid extraction (SFE) technique was applied to extract cytotoxic substances from five medicinal plants including Angelica gigas, Angelica acutiloba, Aralia cordata, Spirodela polyrhiza, Bupleurum falcatum, and Acanthopanax sessiliflorus. The cytotoxicities against P388, A549, and HL-60 cell lines were determined for the supercritical carbon dioxide extracts of five plant materials employed and were compared with those of the conventional organic solvent extracts such as n-hexane, $CHCl_{3}$, and MeOH to evaluate the SFE as an alternative method to conventional organic solvent extraction. In most cases, the SFE extracts of plant materials showed enhanced cytotoxicities when compared with those of other organic solvent extracts. In addition, the optimum temperature and pressure of SFE for extraction of the cytotoxic substances were largely affected by both the plant species and the cell lines tested. These results suggested that SFE could be an alternative to the conventional organic solvent method for the selective extraction of cytotoxic compounds from plants.

  • PDF

Studies on the Some Physical and Chemical Characteristics of Nutmeg Oil by Different Extraction Methods (추출방법에 따른 Nutmeg Oil의 물리적, 화학적 성질에 관한 연구)

  • Jang, Hee-Jin;Ra, Do-Young;Kim, Ok-Chan;Yang, Kwang-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.851-856
    • /
    • 1989
  • The physical properties of essential oil of nutmeg extracted in different methods (SDE, Solvent, $CO_2$) were investigated and also the components of essential oil were analyzed using G.C. and G.C./ Mass. Solvent extraction yield was 23% and was higher than those of SDE extraction and $CO_2$ extraction. From the analysis result and physical properties of nutmeg oil, it was conformed that the nutmeg used In this experiment was similar to East Indies type. The content of sabinene was 3.6-14.1%, 28.4-48.7% for myristicin, 1.2-2.1% for elemicin, and 3.6-5.6% for safrole. The camphene was identified in SDE extracts but not in $CO_2$ extracts. The volatile components of SDE extracts and solvent extracts contained large amount of monoterpene and terpene alcohol but $CO_2$ extracts aminly contained aromatic compounds.

  • PDF

Separation of Heavy Metals from Electroplating Waste Water by Solvent Extraction (용매추출법에 의한 광금폐수중 중금속의 분리에 관한 연구)

  • KIM Sung Gyu;LEE Hwa Yeung;OH Jong Kee
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • A study on the separation of heavy metals such as iron, copper, zinc and nickel from electroplating waste water has been investigated. The results showed that the PC-88A was more effective extractant for the extraction of zinc and the efficiency of zinc was to be about 100% at pH 2.5. And copper and nickel were extracted about 100% at pH 2 and more than 90% at pH 4~5 with LIX 84, respectively. On the other hand, in the case of solvent extraction of electroplating waste water(Acid-Alkali type) containing heavy metals, the ferric ion was first extracted at pH 2∼2.5 with 20% Naphthenic acid or 10% Versatic acid-10. And then, copper and zinc were extracted at pH 2 with 3% LIX 84 and at pH 2.5∼3 with 20% PC-88A respectively, remaining nickel in the raffinate. In this manner, the heavy metals in electroplating waste water could be effectively separated with solvent extraction method.

Effect of Crown Ring Size and Upper Moiety on the Extraction of s-Block Metals by Ionizable Calixcrown Nano-baskets

  • Mokhtari, Bahram;Pourabdollah, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3979-3990
    • /
    • 2011
  • Eight ionizable nano-baskets of cone 25,26-di(carboxymethoxy)calix[4]arene-crown-3,4,5,6 were synthesized and were verified by $^1H$ and $^{13}C$ NMR spectroscopy, IR spectroscopy and elemental analysis. The competitive solvent extractions of alkali and alkaline earth metal cations were studied using such nano-baskets. The novelty of this study is including three binding units of calixarene's bowl, crown ether's ring and electron-donor ionizable moieties in a unique scaffold to assess the binding tendency towards the cations. The objective of this work is to study the extraction efficiency, selectivity and $pH_{1/2}$ of such complexes. The result of solvent extraction experiments indicated that these compounds were effective extractants of alkali and alkaline earth metal cations. Their selectivities were greatly influenced by the acidity of solution and the conformations of the calixcrown. One conformer was selective to $Na^+$ in pH ${\geq}$ 4, while the other was highly selective to $Ba^{2+}$ in pH 6 and upper.

Recovery of Indium from Secondary Resources by Hydrometallurgical Method (2차(次) 자원(資源)으로부터 습식방법(濕式方法)에 의한 인듐의 회수(回收))

  • Wang, Lingyun;Lee, Manseung
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.3-10
    • /
    • 2013
  • Indium is one of the rare metals, and it has been used mainly for preparation of indium tin oxide (ITO). This review investigated the process parameters and the merits and demerits of several methods to recover indium from the leaching solution of secondary resources, such as solvent extraction, ion exchange, and precipitation. D2EHPA has been used mostly as a cationic extractant for indium extraction in moderate acid solutions, while amine extractants are used in strong hydrochloric acid solution. Since the loading capacity of resins for indium is generally small, ion exchange has some advantage over solvent extraction only when the concentration of indium is low.